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a b s t r a c t 

The effect of inserted needle on the subcutaneous interstitial flow is studied. Our goal is to describe 

the physical stress affecting cells during acupuncture needling. The convective Brinkman equations are 

considered to describe the flow through a fibrous medium. Three-dimensional simulations are carried 

out by employing an ALE finite element model. Numerical studies illustrate the acute physical stress 

developed by the implantation of a needle. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

In recent years, computational techniques have been widely 

used by researchers to investigate and simulate biological flow 

within three dimensional context. Applications include blood flow 

models, air flow models in the respiratory tract, interstitial flow 

models, and chemical mediators transport. Most of the structure 

and fluid interactions have been considered with simplified rigid 

wall or deformable wall models. 

Methods to predict flows that account for moving domains or 

domain deformability using the finite element method are based 

on fixed mesh methods or moving mesh methods. On the one 

hand, fixed mesh methods include the immersed boundary formu- 

lation [1] which relies on the description of solid phase by adding 

a force vector to the governing equations. A similar approach, 

known as the fictitious domain formulation [2,3] , is based on the 

use of Lagrange multipliers to enforce kinematic condition on the 

solid phase or alternatively based on a penalty method [3] . Both 

methods track solid phase with a characteristic function or a level 
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set function. These methods are well adapted to moving bodies in 

the fluid or fluid-structure computation with interface of a highly 

geometric complexity. The latest method has been implemented 

with FreeFem ++ [4] . On the other hand, moving mesh methods 

include the Lagrangian method, the moving finite element (MFE) 

method [5,6] , the deformation map method [7] , the Geometric 

Conservation Law (GCL) method [8] , the space/time method [9–12] , 

and the Arbitrarily Lagrangian–Eulerian (ALE) method [13–15] for 

the solution of fluid dynamic problems. Note that the space-time 

finite element method can also be implemented in FreeFem ++ in 

1D and 2D. 

Significant progress has been made in recent years in solving 

fluid-structure interaction problems in deformable domains using 

the ALE method. The mathematically rigorous ALE framework has 

been well accepted to be applicable to simulate transport phenom- 

ena in time and allows some freedom in the description of mesh 

motion. A theoretical analysis of the ALE method can be found 

in [16,17] . However, ALE equations are computationally expensive 

when considering a large domain because of the necessity of con- 

tinuously updating the geometry of the fluid and structural mesh. 

Interface tracking with time discretization also raises some imple- 

mentation questions. The implementation of the ALE method can 

be done in FreeFem ++ [18] . 

Study of biological flows plays a central role in acupunc- 

ture research. For a description of the underlying acupuncture 
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mechanism, one can refer to [19–21] . Interstitial flow models 

take into account interstitial fluid, cell membrane interaction, and 

fiber interactions [22] . Mastocytes, among other cells, are able 

to respond to fluidic stimuli via mechanotransduction pathways 

leading to the degranulation and liberation of chemical mediators 

[23] . Degranulation mechanisms include interaction of the cell 

membrane with interstitial and cytosolic flow [24] . Ion transport 

in narrow ion channels is another challenging task to model. 

Indeed, degranulation of chemical mediators upon stimulation can 

be triggered by a rapid Ca 2+ entry in the cytosol [25] . 

Modeling the three-dimensional interstitial flow in tissues is 

extremely challenging for a large number of reasons: a complex 

geometry of the tissue, an accurate constitutive description of 

the behavior of the tissue, and flow rheology are only few ex- 

amples. Macroscopic models developed for incorporating complex 

microscopic structure are essential for applications [22,25–28] . In 

the context of acupuncture, the interstitial flow has been mod- 

eled by the Brinkman equations in two-dimensional fixed domain 

[27,28] and two-dimensional deformable domain [19] . 

In this paper, a porous medium formulation of the intersti- 

tial fluid is presented for modeling mastocyte-needle interaction 

in deformable connective tissues. This formulation is based on the 

conventional ALE characteristic/Galerkin finite element model for 

an unsteady flow thought a porous medium modeled by the in- 

compressible Brinkman’s equations in a three-dimensional mov- 

ing domain. The motion of the needle in the fluid is taken into 

account. The main features of the model can be summarized as 

follows: 

1. The loose connective tissue of the hypodermis is constituted 

of scattered cells immersed in extracellular matrix. The ex- 

tracellular matrix contains relatively sparse fibers and abun- 

dant interstitial fluid. The interstitial fluid contains water, ions 

and other small molecules. Such a fluid corresponds to plasma 

without macromolecules and interacts with the ground sub- 

stance, thereby forming a viscous hydrated gel that can stabilize 

fiber network [29,30] . 

2. The Darcy law is used to approximate fibers of the media as 

a continuum and allows us to compute the actual microscopic 

flow phenomena that occur in the fibrous media. 

3. Brinkman’s law then allows us to describe the flow field around 

solid bodies such as the embedded cells in extracellular matrix. 

4. Transient convective Brinkman’s equations [31–33] are applied 

to simulate interstitial flow in a fibrous medium driven by a 

moving needle [19] . 

Although the previously stated approach cannot give informa- 

tion on microscopic events, it can describe macroscale flow pat- 

terns in porous media. Focus is given to the effects of interstitial 

fluid flow during implantation of an acupuncture needle until the 

tip has reached the desired location within the hypodermis. The 

objective of this work is to give a description of the physical stress 

(shear stress and pressure) influencing tissue and cells. 

2. Methods 

On a microscopic scale, the interstitial tissues are composed 

of fluid, cells, and solid fibers. The interstitial fluid contains wa- 

ter, ions and other small molecules. Such a fluid corresponds to 

plasma without macromolecules [22] . It interacts with the ground 

substance to form a gel-like medium. 

A model taking into account individual fibers and cell adhesion 

complexes is already a falsification of the reality. Moreover, it is 

very costly from the computational viewpoint. When considering 

an organized homogeneous matrix of fibers, computation of such a 

model shows the microscopic fluctuations of the fluid shear stress 

at the protein level [34] . 

Due to biological complexity, the interstitium is considered as a 

fluid-filled porous material [22] . The interstitial flow is simulated 

using the incompressible convective Brinkman equation. The phe- 

nomenological model cannot give information on unneeded micro- 

scopic events but the Darcy equation can describe macroscale flow 

patterns in porous media. 

2.1. Flow equations 

The governing equations of the unsteady flow of an incompress- 

ible fluid through a porous medium (with mass density ρ , dynamic 

viscosity μ, and kinematic viscosity ν = μ/ρ) can be derived as 

[31–33] : 

ρ

α f 

(
∂ ̄u 

∂t 
+ ū · ∇ 

(
ū 

α f 

))
− μ∇ 

2 ū + 

1 

α f 

∇ (α f p f ) = −μ

P 
ū 

in �(t) , (1) 

∇ · ū = 0 , (2) 

ū (x , 0) = ū 0 (x ) , (3) 

where −μ
P ū denotes the Darcy drag, P the Darcy permeability, ū 

the averaged velocity vector, and p f the pressure. The averaged ve- 

locity is defined as 

ū = α f u f , (4) 

where u f is the fluid velocity and 

α f = 

fluid volume 

total volume 
(5) 

is the fluid volume fraction. This volume fraction corresponds to 

the effective porosity of the medium. The fluid fractional volume 

αf is taken as a space-dependent parameter to model the distin- 

guished properties around an acupoint. 

The system of equations (1–2) is applied to the case of a flow 

driven by the motion of a needle in the deformable domain �( t ) 

[19] . The domain boundary can be decomposed into four sur- 

faces: the needle boundary denoted by �1 , an impervious bound- 

ary (wall) denoted by �2 , the mastocyte membrane denoted by 

�3 , and the open boundary on the sides denoted by �4 . The clas- 

sical no-slip condition is applied to the needle surface �1 , the 

rigid wall �2 , and the cell surface �3 . At the outer boundary �4 

a traction-free boundary condition is prescribed. Thus, the entire 

set of boundary conditions reads as 

ū = v needle , on �1 , (6) 

ū = 0 , on �2 , (7) 

ū = 0 , on �3 , (8) 

−μ∇ ̄u · n + p f n = 0 , on �4 . (9) 

2.2. Finite element model 

The governing equations in Section 2.2.1 are solved using the 

finite element software FreeFem ++ [35] . This code programs the 

discrete equations derived from the finite element weak formula- 

tion of the problem presented in Section 2.2.3 using a characteris- 

tic/Galerkin model to stabilize convection terms. 
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