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a b s t r a c t 

In previous works [S. R. Idelsohn, J. Marti, P. Becker, E. Oñate, Analysis of multifluid flows with large time 

steps using the particle finite element method, International Journal for Numerical Methods in Fluids 75 

(9) (2014) 621–644. doi:10.1002/fld.3908. URL http://dx.doi.org/10.1002/fld.3908 , Juan M. Gimenez and 

Leo M. González, An extended validation of the last generation of particle finite element method for 

free surface flows, J Comput Phys 284 (0) (2015) 186–205. doi: http://dx.doi.org/10.1016/j.jcp.2014.12.025 . 

URL http://www.sciencedirect.com/science/article/pii/S0 0219991140 08420 ], the authors have presented a 

highly efficient extension of the Particle Finite Element Method, called PFEM-2, to solve two-phase flows. 

The methodology which uses X-IVS [S. Idelsohn, N. Nigro, A. Limache, E. Oñate, Large time-step explicit 

integration method for solving problems with dominant convection, Comp Methods in Appl Mech Eng 

217–220 (2012) 168–185.] to treat convection terms allowing large time-steps was validated for problems 

where the gravity forces and/or the inertial forces dominate the flow. Although that is the target range 

of problems to solve with PFEM-2, most of real problems that fall in these categories also includes other 

flow regimes in certain regions of the domain. Maybe the most common secondary regime is when the 

surface tension dominates, as an example when drops or bubbles are released from the main flow, and 

this feature must be taken into account in any complete numerical strategy. 

Attending to that, in this work the treatment of the surface tension to PFEM-2 is included. An implicit CSF 

methodology is employed together with a coupling between the marker function with a Level Set func- 

tion to obtain a smooth representation of the normal of the interface which allows an accurate curvature 

calculation. Examples for curvature calculation and isolated bubbles and drops are presented where the 

accuracy and the computational efficiency are analyzed and contrasted with other numerical method- 

ologies. Finally, a simulation of a jet atomization is analyzed. This case presents the above mentioned 

features: it is a inertia-dominant flow with a surface tension phenomena on drops and ligaments break 

up that can not be neglected. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

Solving efficiently multi-phase flows is still an open challenge. 

Although the dynamics of single phase flows are well understood 

and can be solved accurately without loss of efficiency, the compu- 

tational modeling of two or more phases is an underdevelopment 

field with growing interest. In multi-phase flows the behavior of 

� Fully documented templates are available in the elsarticle package on CTAN . 
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the fluid at each phase depends on the interface and its shape de- 

pends on the flow, then solving this complex coupling is a chal- 

lenging task. 

According to the framework used to derive the formulation, 

the numerical methods can be split into two main approaches, 

named Eulerian (fixed framework) and Lagrangian (mobile frame- 

work). Former formulations were the first ones to be developed 

and they provide a natural evolution from single-phase flows since 

most of Computational Fluid Dynamics (CFD) software are formu- 

lated within a fixed framework, while latter formulations offer a 

more natural choice for simulations in which deformations are not 

negligible, such as in multi-phase problems. 

http://dx.doi.org/10.1016/j.compfluid.2016.04.026 

0045-7930/© 2016 Elsevier Ltd. All rights reserved. 
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In the Eulerian strategies, the Finite Element Method (FEM) is 

a standard tool to solve both structural and fluid problems. In the 

case of standard FEM, the exact solution cannot be represented in 

the space spanned by the shape functions, then they will not be 

able to capture it accurately, but an averaged solution will be ob- 

tained. This is particularly important for multi-phase models, since 

domains composed by different phases usually lead to disconti- 

nuities in the properties along the interface, which translates into 

discontinuities in the unknowns or in their gradients. An alterna- 

tive to overcome this limitation is to use Enriched Finite Elements 

[4–7] , which adds degrees of freedom to elements that are cut by 

the interface in order to capture the part of the solution that es- 

capes from the standard shape function field. Coppola-Owen et al. 

[8] proposed a simple enrichment functions that is capable of cap- 

turing accurately gradient discontinuities (kinks) in the pressure 

field. Moreover, Ausas et al. [9] proposed a set of three enrichment 

functions that are able to capture both kinks and jumps in the 

pressure. Another option in the Eulerian framework is the Finite 

Volume Method (FVM), which has more followers than the FEM 

for fluid dynamics. The domain is discretized with cells, and the 

solution is obtained by calculating fluxes through the faces of each 

of them. This leads to a formulation that is automatically conser- 

vative on the fluxes, unlike FEM. 

No matter which Eulerian strategy is used to solve the fluid dy- 

namics, an accurate and efficient simulation of interface evolution 

is of fundamental importance. For example, in FEM, the use of en- 

riched space is still insufficient to simulate multi-fluids unless it is 

coupled with a second tool to locate precisely the position of the 

interface, necessary to build the extra shape functions. It is pos- 

sible to distinguish two broad classes of computational methods 

used to describe the evolution of interfaces, namely: interface cap- 

turing and interface tracking methods. 

Purely Eulerian algorithms, which solve the fluid in a fixed un- 

derlying mesh, use capturing methods. In this approach the inter- 

face is determined by an implicit function that is advected in the 

computational domain. Popular methods of this type are the Level 

Set Method (LSM) [10] , which has become widely used when the 

interface undergoes extreme topological changes, e.g., merging or 

pinching off; and the Volume of Fluid (VOF) technique [11] , which 

is naturally employed with FVM. 

The LSM consists in using a distance function that is convected 

according to the fluid velocity. This function represents the dis- 

tance from a point to the interface. By definition, the interface will 

be located where its value is zero. This level function is variable 

in the space, but if it has large variations in time, after some time 

steps it does not represent the distance to the interface anymore, 

leading to diffusion of the interface and mainly loss of mass. For 

this reason a reinitialization of the level set must be done to re- 

cover a distance function which guarantees that the properties are 

better conserved. Moreover, an Eulerian advection of the level set 

function produces large diffusion and requires small time-steps to 

achieve accurate solutions. 

On the other hand, VOF is based on the conservative nature of 

the FVM, where instead of tracking an interface, it is more natural 

to save the content of different phases at each cell and define the 

shape and position from this data later on. The method defines a 

function that is the fraction occupied by one of the phases in each 

cell of the domain. Therefore the interface position is not tracked, 

but the fraction of fluid instead. Once fluids have been convected 

among cells, the interface position can be reconstructed (accepting 

some accuracy loss). This exchange between cells, inherited from 

the conservative nature of the FVM, allows to guarantee mass con- 

servation. This is an important advantage respect to the LSM, in 

which mass loss is a critical topic which must be addressed and 

treated. Moreover, the FVM is very robust and is likely to be the 

most used one in commercial/widespread codes. As an example of 

application, OpenFOAM 

® [12] uses this strategy to solve multi-fluid 

problems. 

Formulations clustered in the Lagrangian framework are a more 

natural choice for simulations where there are large deformations. 

The original idea, proposed by Monaghan et al. [13] and later 

works applied to fluid mechanics [14] , was a meshless method 

named Smoothed Particle Hidrodynamics (SPH). Using particles 

that are advected carrying its own properties over the domain, 

they are able to almost avoid the numerical diffusion. In the con- 

text of incompressible flow, the Lagrangian perspective makes it 

possible to use a material derivative formulation where the ab- 

sence of the non-linear convective terms transform the Navier–

Stokes system into a transformed linear coupled problem between 

points and velocities. In the case of multi-phase problems, the cal- 

culation of the interface evolution is naturally done using particles 

[15,16] . However most of Lagrangian formulations have the uncom- 

fortable drawback of requiring a particle position treatment. In the 

case of meshless methods a constant track of all the moving points 

must be kept where searching algorithms have to be used to speed 

up the computational time to calculate the interaction forces. On 

the other hand, the mesh-based methods must lead with the ne- 

cessity of constructing or controlling the mesh quality during each 

time-step of the simulation if the accuracy of the solution has to 

be maintained. Searching algorithms, evaluation of the mesh dis- 

tortions or the re-meshing processes are always computationally 

expensive and it would be interesting to explore the possibility of 

avoiding those steps. 

Alternatives, that combines both Eulerian and Lagrangian tools, 

have provided to be a good alternative to pure methods. In [17] a 

pure Eulerian solver for the fluid is used, but Lagrangian marker 

particles are used to improve the LSM, then the interface track- 

ing. This method proves to be more accurate than the pure Eule- 

rian or pure Lagrangian counterpart in the tracking of the inter- 

face. Another option is the named Particle Finite Element Method 

(PFEM) [18] which consists of using a set of particles that define 

the nodes of a finite element mesh. Since fluids have no defor- 

mation limit, remeshing must be done at each time step. As all 

Lagrangian methods, the PFEM offers a more natural solution to 

problems where the particles of the domain can move freely. Un- 

like LSM, there is no need to recalculate the surface since the lo- 

cation of the interface is obtained trivially; since each particle is 

associated with a material no extra function is needed. Combin- 

ing the original idea of Particle in Cell (PIC) [19] where a fixed 

mesh is used to calculate forces and pressures and moving par- 

ticles to convect properties, the PFEM method was extended lead- 

ing to a novel strategy so-called PFEM-2 [3,20] . Among the advan- 

tages of the method, the Lagrangian formulation employed allows 

to convect material properties such as density, viscosity, etc., elim- 

inating the need of the non-linear convective term. Also, using an 

improved explicit integration named X-IVS (eXplicit Integration fol- 

lowing the Velocity Streamlines) added to an implicit correction of 

diffusive terms, there is no limitation in the time step, being the 

required precision the only bound for the time-step [21] . The en- 

hanced PFEM-2 version to solve multiphase problems, presented in 

[1] and validated in [2] , preserves the large time-step goodnesses 

of the single-phase strategy, also includes enrichment strategies to 

capture discontinuities in the pressure gradient, i.e., pressure kinks. 

However, the range of application of this strategy does not cover 

an important group of two-phase problems such as those where 

the surface tension is dominant. 

In those problems, a surface tension model must be imple- 

mented at the interface being a validated strategy the Continuous 

Surface Force model (CSF) [22] which is based on an approxima- 

tion of the interface curvature from the gradient of the marker 

function. In the case of VOF function, the gradient cannot be cal- 

culated accurately since it is a discontinuous step function, and its 
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