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a b s t r a c t 

The problem of a drop subject to a simple shear flow in high constriction geometry is addressed numer- 

ically for different flow conditions. Wall effect on the critical capillary number and drop deformation is 

analyzed. Under uniform condition, drops in low and moderate Reynolds flows are more stable when the 

confinement is increased. The critical capillary number is shown to increase for drops more viscous than 

the medium (viscosity ratio λ = 0 . 3 ) and decreases when the medium is more viscous ( λ = 1 . 9 ) or when 

Reynolds number is increased. A discussion on the accuracy of the numerical method and solutions to 

typical problems are included for comparison. The drop interface is reconstructed using the piecewise 

linear interface calculation (PLIC) and transported with the volume-of-fluid (VOF) method, which fol- 

lows unsplit case-by-case schemes based on the basic donating region (BDR) or the defined donating re- 

gion (DDR). Surface tension is included with the continuum-surface-force (CSF) model. A high-resolution 

(SMART) semi-implicit finite-volume discretization is employed in the linear momentum equations. Mass 

is conserved by following an implicit pressure-correction method (SIMPLEC). The normal vector of the in- 

terface is computed from height functions using least squares fitting. The advantage of the DDR scheme 

lies in its volume-conserving capabilities which have not been exploited in recent investigations. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Problems involving particle deformation and breakup are com- 

monly observed in many industrial applications and natural pro- 

cesses, leading to vigorous theoretical and experimental research 

activity in a variety of fields. Fundamental studies in drop dynam- 

ics allowed for the understanding of principal mechanisms and 

the effect of properties, forces and geometry on the deformation. 

Herein, the scope is limited to the numerical analysis of drop de- 

formation and breakup in simple shear flows using the volume of 

fluid (VOF) method and the effect of inertia. 

When viscous drops are subject to initial deformations, the in- 

terface motion behaves like a linear or a damped oscillator, for 

large values of the Reynolds number, Re , and low Re , respectively. 

When external forces are present, like in shearing flows, the mo- 

tion of the drop is governed by Re , capillary number, Ca , viscosity 

ratio, λ = ηd /ηm 

, density ratio, γ = ρd /ρm 

, confinement geometry, 

among others. In the case of simple shear flows, drops can adopt 

steady-state shapes or break up into daughter drops, depending on 

the competing effect of surface-tension, inertia and viscous forces. 
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Typical parameters of interest are the Taylor deformation, D , given 

by D = ( L − B ) / ( L + B ) , where L and B are the half-length and half- 

breadth of the drop; orientation angle θ , which is measured be- 

tween the drop semi-major axis and the horizontal; critical con- 

ditions for breakup or fragmentation; number of satellites; and 

mechanisms. These parameters are very well documented in the 

literature [5,6,9,16,21,34,40,47,53,54] . When inertia is present, the 

drop is expected to break at lower Ca . 

The numerical study of these and other problems have been 

performed in the past using several techniques: boundary inte- 

gral method (BIM), level set (LS) [49] , VOF, front tracking (FT) [51] , 

smoothed particle hydrodynamics (SPH), lattice Boltzmann (LB) 

and hybrid methods like the coupled level-set and VOF (CLSVOF) 

[48] , and the particle-level-set (P-LS) [11] , among others. Each 

method has its own limitations and improvements, normally re- 

lated to implementation time, accuracy of the solution, mass con- 

servation capabilities and minimal resolution of the subgrid struc- 

tures. Rider et al. [43] concluded that a level-set methodology does 

not guarantee volume conservation in highly distorted flows, giv- 

ing rise to unacceptable errors. Front-tracking methods are very 

accurate, but they exhibit loss of mass due to non-solenoidal ve- 

locity projections; accurate advection of the front points tends to 

minimize the error produced by changes in the total mass. Fur- 

thermore, changes in mass were found to be unacceptably high 
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for long-term simulations involving many bubbles or drops where 

the resolution of each particle is relatively low [50] . Additional 

techniques aimed at improving computational performance have 

been successfully applied to compute the surface-tension force and 

other properties across the interface, like the multi-level methods, 

formulations based on adapted grids, and the use of unstructured 

meshes. 

Despite all the advances in volume-tracking methods (VOF), 

there are several disadvantages. For example, traditional and high- 

order/high-resolution techniques used to solve the advection equa- 

tion have been shown to degrade the interface thickness and 

shape, regardless of the order of the scheme [24,25,43] , unless 

special downwinding schemes or interface reconstructions are em- 

ployed, like in the flux-corrected transport (FCT) algorithm of Rud- 

man [44] or the piecewise parabolic method (PPM) of Miller and 

Colella [33] . Low-order VOF methods suffer from the so-called 

“flotsams” or “wisps”, which are lumps of dispersed or matrix fluid 

not fluxed properly. This problem has been mitigated by using re- 

distribution algorithms [17] . 

The surface-tension force acting on an interface has been suc- 

cessfully implemented with the continuum surface force model 

(CSF) of Brackbill et al. [4] , where the interfacial force is expressed 

as a force per unit volume. The extent of this force is determined 

by a discrete delta function which smooths the jump conditions 

ideally present across an interface. The CSF method yields a con- 

tinuous pressure distribution across the interface characterized by 

first-order convergence in space, meanwhile the sharp surface- 

tension force (SSF) method [14] yields a sharp jump which shows 

second-order convergence in space. However, both methods show 

the same error of the spurious currents, which are artificial vortex- 

like structures created by large body forces that increase flow ac- 

celeration. These structures have a larger impact on the region 

with lower density and may disrupt the interface, conducing to a 

failure of convergence, even on grid refinement. The spurious cur- 

rents also depend on other parameters: they reduce slightly when 

the time step �t is reduced; they increase slightly when the den- 

sity ratio ρout / ρ in is increased; and they reduce considerably by 

increasing the internal fluid density, following u ∼ σ�tE ( κ) 2 / ρ in , 

where E is the error in curvature. In the static-drop problem, the 

magnitude of the spurious currents at the interface depends on 

fluid properties, u � C σ / η, and the curvature model, but not on 

the surface-tension model (CSF or SSF), meanwhile the error in 

pressure depends primarily on the surface-tension model. The con- 

stant of proportionality C adopts values of 0.01 in the VOF method 

of Lafaurie et al. [26] , 10 −4 in the parabolic reconstruction method 

of Renardy and Renardy [41] (both with uniform properties), and 

10 −5 in the connected marker method of Tryggvason and cowork- 

ers [45] (Tryggvason, unpublished lecture notes). 

Several multi-dimensional fluxing schemes have been proposed. 

The first-order defined donating region (DDR) method of Harvie 

and Fletcher [18] is a piecewise linear scheme that integrates cell 

boundary fluxes geometrically and provides exact mass conserva- 

tion. The second-order methods of Puckett et al. [38] and Rider 

and Kothe [42] increased the complexity by extending the do- 

nating region to adjacent cells. Another fluxing strategy is the 

Stream scheme of Harvie and Fletcher [17] , which is a fully mul- 

tidimensional boundary flux integration technique based on the 

calculation of the volume of several streamtubes crossing a con- 

trol surface. The Stream scheme is first to second-order in the 

single-vortex test, depending on the reconstruction method. Sev- 

eral multidimensional schemes require volume redistribution to 

conserve mass. High-order multidimensional fluxing schemes have 

been achieved, like the fourth-order DRACS (donating region ap- 

proximation by cubic splines) method of Zhang [55] . 

Among methods that reconstruct an interface following case- 

by-case procedures are the linear 2D method FLAIR Ashgriz and 

Fig. 1. Problem description and discretization. 

Poo [2] and the second-order 2D method of Kim and No [23] . 

Second-order case-by-case reconstructions are in general avoided 

because of the excessive amount of cases. In 3D, the parabolic re- 

construction of surface tension (PROST) method of Renardy and 

Renardy [41] is second-order and predicts drop deformation and 

breakup accurately. 

When comparing PLIC-based methods, accuracy is determined 

by the error in the reconstruction step (calculation of the inter- 

face normal vector) and the fluxing. A sufficient condition to re- 

construct smooth interfaces with second-order accuracy is for the 

algorithm to reproduce linear/planar interfaces exactly [35] . The 

method of Youngs computes the normal vector explicitly from the 

volume fractions and is first-order accurate, while the full least- 

squares minimization or Swartz’ s method is second-order [42] . 

Other methods that achieve second-order accuracy on smooth in- 

terfaces are the minimization methods of LVIRA [37] and ELVIRA 

[36] . When the interface has sharp corners, second-order methods 

like ELVIRA reduce their accuracy to first order [55] . 

An important quantity that determines the accuracy of the so- 

lutions in multiphase flows involving surface-tension forces is the 

curvature. Among different techniques used to compute the curva- 

ture, the height function (HF) method offers second-order conver- 

gence on mesh refinement [12,14,30,48] . Despite the advances in 

the field with the HF method since the work of Helmsen et al. [19] , 

hybrid methods, like the “best candidate” method of Liovic et al. 

[30] that selects the curvature from different stencils/methods, 

seem to be the solution to overcome the errors incurred when us- 

ing the traditional HF methods. The largest error in curvature us- 

ing the HF method occur in regions where the components of the 

normal vector at the interface are of similar magnitude and when 

the radius of curvature is comparable to or smaller than the grid 

size Cummins et al. [10] . By advecting the normal vector, Raessi 

et al. [39] introduces another approach that produces curvatures 

with second-order convergence. In comparison, traditional level-set 

methods show no convergence. 

Here, VOF methods are compared using classical problems in- 

volving viscous flows. A simplified method to transport the vol- 

ume fraction, denoted as BDR, is briefly compared with the DDR 

method. The semi-analytical DDR method here developed is tested 

for different problems in 3D. The nonlinear oscillation of an 

initially-deformed drop is studied to show the overall accuracy, 

robustness and long-term stability. Finally, the deformation and 

breakup of drops in a simple shear flows is considered for high 

confinement geometry. 

2. Problem formulation 

The problem of an isothermal immiscible viscous drop sheared 

by two closely located walls, as depicted in Fig. 1 , is addressed nu- 

merically and the critical Capillary number for breakup is sought 

for different viscosity ratios between the drop and the medium. 

The classical two-fluid mixture model is considered, where the ve- 

locity field is given by a mixture-averaged velocity. The domain 

is filled with a dispersed phase “d ” and a continuous phase or 

medium “m ”. 
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