Computers and Fluids 146 (2017) 74-85

journal homepage: www.elsevier.com/locate/compfluid

Contents lists available at ScienceDirect

Computers and Fluids

Monotone level-sets on arbitrary meshes without redistancing

Ido Akkerman

@ CrossMark

Mechanical, Maritime and Materials Engineering Department, Delft University of Technology, Netherlands

ARTICLE INFO

Article history:

Received 25 May 2016

Revised 23 December 2016
Accepted 5 January 2017
Available online 10 January 2017

Keywords:

Level-set

Arbitrary meshes
Smooth heaviside
Implicit redistancing

ABSTRACT

In this paper we present approaches that address two issues that can occur when the level-set method is
used to simulate two-fluid flows in engineering practice. The first issue concerns regularizing the Heavi-
side function on arbitrary meshes. We show that the regularized Heaviside function can be non-smooth
on non-uniform meshes. Alternative regularizing definitions that are indeed smooth and monotonic, are
introduced. These new definitions lead to smooth Heaviside functions by taking the changing local mesh-
size into account. The second issue is the computational cost and fragility caused by the necessity of
redistancing the level-set field. In [1, 2] it is shown that strongly coupling the level-set convection with
the flow solver provides robustness and potentially efficiency and accuracy advantages. The next step
would be to include redistancing within the strong coupling part of the algorithm. The computational
cost of current redistancing procedure prohibit this. Four alternative approaches for circumventing the
expensive redistancing step are proposed. This should facilitate a fully coupled level-set approach. Some
benchmark cases demonstrate the efficacy of the proposed approaches. These includes the standard test
case of the vortex in a box. Based on these results the most favourable redistancing approach is selected.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Level-sets are a very powerful approach for solving interface
problems [3]. By disconnecting the interface description from the
underlying mesh, topology changes of the interface are handled
with ease. For numerical reasons, such as numerical quadrature
or finite differencing, the interface is often given a finite mesh-
dependent width. This is done by adopting a so-called regular-
ized Heaviside function, where the transition from zero to unity
does not occur instantaneously but over a finite band. This reg-
ularization, however, causes two problems. On irregular meshes
- which might occur in the analysis of engineering artefacts -
the smoothed Heaviside can become non-smooth or even non-
monotone. Additionally, the level-set is required to be a distance
function in order to control the thickness of the interface. Due to
its evolution the level-set evolves requires to be redistanced, that
is the distance property needs to be actively repaired.

In [1,2] the level-set method is used to model a rigid-body
floating on a water surface. This water surface is handled using
a level-set. In this paper we adopted a strongly coupled modeling
approach. Meaning that both the flow; interface evolution; body
motion and mesh deformation are solved simultaneously. In agree-
ment with [4-6] - and other FSI literature- this approach results
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in a robust solution strategy. In a pure two-fluid problem, i.e. with-
out a floating object, the strongly coupled approach proved to be
more robust than traditional approaches where interface evolution
is solved after the flow problem is solved.

However, the redistancing of the level-set was not included in
the strongly coupled part of the solver, this was done at the end
of each time step. Due to the redistribution of mass associated
with redistancing, momentum and energy conservation are dif-
ficult to control. Certainly, the energy errors are troublesome as
these might trigger instabilities in the solver. Therefore, there is a
desire to include the redistancing step in the strongly coupled part
of the method. This should allow methods that are either energy
conservative or guaranteed to be energy dissipative. This is envi-
sioned to lead to more robust and more accurate methods.

In this paper we present four alternative approaches which lead
to an approximate distance field without directly solving a redis-
tancing problem. These approaches are formulated in such a way
that they potentially solve the non-smoothness on irregular grids.

The paper is structured as follows, in Section 2 provides a short
introduction to the level-set method and the regularized Heaviside
function. In Section 3 we show that a naive definition of the regu-
larized Heaviside can actually be non-smooth. A potential solution
to this problem is presented.

In Section 4 we build on the result from the previous section
and introduce four alternative approaches to redistance the level-
set field. All these approaches circumvent solving the difficult non-
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linear Eikonal equation. The Eikonal equation is translated to sim-
ple projection problems that achieve the same: a distance field
suitable to define a smooth Heaviside.

In Section 5 we give a short description of the numerical for-
mulations and the finite element and isogeometric discretizations
employed to solve the convection and redistancing problems in
the next section. In this section, Section 6, we first solve a sim-
ple redistancing problem on irregular grids and then solve the vor-
tex in a box problem using different discretizations and different
redistancing approaches. Using these test cases we identify the
best method, and the appropriate numerical parameters. For this
method a mesh convergence study is performed and suitability in
three dimensions is tested.

In Section 7 we conclude and sketch a perspective for further
use of the proposed methods

2. The level set method

The level-set method has since its origin [3] been applied to
numerous problems involving surfaces, interfaces and shapes. Its
application can be found in a wide range of areas from image pro-
cessing, computer graphics, topology and shape optimisation and
simulation of physics problems at interfaces such as crystal growth,
or two-fluid flow.

See, the review papers [7,8] or books [9,10] for a broad picture
of the applications and methods available. In this paper we focus
on level-set in combination with variational methods such as fi-
nite element and isogeometric analysis [11] with the final goal of
applying it to two-fluid flow. The two-fluid problem is a physical
problem where the interface between the fluids is unknown and
physical parameters are discontinuous across the interface. Adop-
tion of a level-set allows for easy handling of interface topology
changes and regularisation of the discontinuity.

2.1. Level-sets for two-fluid problems

In the level-set method a surface of lower dimension, such as
an interface between two distinct materials is indirectly parame-
terized employing a globally defined function. This function is de-
noted as ¢, and defines a surface as follows,

IN={xeQ:¢=0} (1)
This automatically leads to the following distinct subdomains,

Q ={xeQ:¢ <0},

Qt={xeQ:¢ >0}, (2)

which allows the prescription of different physical parameters in
each subdomain. For instance, the density

_Jpo if xeQ,
p_{pl it xeQ (3)
Alternatively, the Heaviside function
0 if ¢ <0,
H@) =13 if ¢=0, (4)
1 if ¢>0,
can be used for a convex interpolation to define a density
p =po(1=H(@))+pH(®). (5)

This has the advantage of automatically handling the interface it-
self in a natural way.

2.2. Regularized heaviside

In numerical methods the sharp interfaces defined in the previ-
ous section can lead to problems. For instance this appears when

determining a mass matrix, My, is approximated by quadrature
as,

May = [ pNaNs2~ 37 p (tNa e ) (6)

i=1.n;

A sudden change of the density leads to a very bad approximation
of the intended integral.

To alleviate this problem the sharp Heaviside function, defined
in Eq. (4), is replaced by a regularized Heaviside function. This reg-
ularized Heaviside function is often defined as

0 if ¢ <-—¢,
Ho@) =11 +sin(22) it ¢—0. 7)
1 if ¢>c¢€,

where € is the smoothing distance. Instead of an instantaneous
switch from O to 1, this switch is spread over a finite layer around
the interface. To have strict control over the width of this interface
layer, we require ¢, to be a signed distance function. This means it
needs to satisfy

Vol =1, (8)

which is the Eikonal equation. As the regularizing is introduced
to deal with numerical issues, such as quadrature, it is natural to
specify the finite interface layer in terms of mesh size h as

€ =ah. 9)

Here « is an O(1) parameter. The meshsize can be defined unam-
biguously for structured equidistant meshes. However, on arbitrary
meshes this is not always straightforward. In [1,12,13] we employed
the meshsize

ho Vel
JVé - GVg

where G is the metric-tensor

T
9§\ 98
G=|=) = 1
<8x) ox (1)
where x is the physical space coordinate and £ is the coordinate in
parametric space pertaining to the reference element.
This definition of h incorporates the desired directional infor-

mation. Effectively, a length scale is extracted from the metric-
tensor in the direction ”g—ﬁu.

(10)

3. Monotonicity on arbitrary meshes

In this section we further discuss the smoothing of the Heav-
iside function on arbitrary meshes. For this exposition it is useful
to slightly rewrite the regularized Heaviside function,

X 0o if ¢<-a,
H(@) =11 +sin(Z2)) if ¢=0, (12)
1 if (]S > o,
where
1 9@
=2 (13)

is the scaled distance. In other words, if ¢ is the actual distance
to the interface, expressed in for instance mm or m, then (;3 can
be thought of as that same distance but expressed in number of
elements, that is a multiple of a typical element length. However,
since this scaling occurs locally, the variation of h along the path-
from interface to the point under consideration - is not taken into
account. Therefore, this rescaled distance is only an effective esti-
mate if h varies only mildly (or not at all) across the interface.
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