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a b s t r a c t 

In this paper we present approaches that address two issues that can occur when the level-set method is 

used to simulate two-fluid flows in engineering practice. The first issue concerns regularizing the Heavi- 

side function on arbitrary meshes. We show that the regularized Heaviside function can be non-smooth 

on non-uniform meshes. Alternative regularizing definitions that are indeed smooth and monotonic, are 

introduced. These new definitions lead to smooth Heaviside functions by taking the changing local mesh- 

size into account. The second issue is the computational cost and fragility caused by the necessity of 

redistancing the level-set field. In [1, 2] it is shown that strongly coupling the level-set convection with 

the flow solver provides robustness and potentially efficiency and accuracy advantages. The next step 

would be to include redistancing within the strong coupling part of the algorithm. The computational 

cost of current redistancing procedure prohibit this. Four alternative approaches for circumventing the 

expensive redistancing step are proposed. This should facilitate a fully coupled level-set approach. Some 

benchmark cases demonstrate the efficacy of the proposed approaches. These includes the standard test 

case of the vortex in a box. Based on these results the most favourable redistancing approach is selected. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Level-sets are a very powerful approach for solving interface 

problems [3] . By disconnecting the interface description from the 

underlying mesh, topology changes of the interface are handled 

with ease. For numerical reasons, such as numerical quadrature 

or finite differencing, the interface is often given a finite mesh- 

dependent width. This is done by adopting a so-called regular- 

ized Heaviside function, where the transition from zero to unity 

does not occur instantaneously but over a finite band. This reg- 

ularization, however, causes two problems. On irregular meshes 

– which might occur in the analysis of engineering artefacts –

the smoothed Heaviside can become non-smooth or even non- 

monotone. Additionally, the level-set is required to be a distance 

function in order to control the thickness of the interface. Due to 

its evolution the level-set evolves requires to be redistanced, that 

is the distance property needs to be actively repaired. 

In [1,2] the level-set method is used to model a rigid-body 

floating on a water surface. This water surface is handled using 

a level-set. In this paper we adopted a strongly coupled modeling 

approach. Meaning that both the flow; interface evolution; body 

motion and mesh deformation are solved simultaneously. In agree- 

ment with [4–6] – and other FSI literature– this approach results 
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in a robust solution strategy. In a pure two-fluid problem, i.e. with- 

out a floating object, the strongly coupled approach proved to be 

more robust than traditional approaches where interface evolution 

is solved after the flow problem is solved. 

However, the redistancing of the level-set was not included in 

the strongly coupled part of the solver, this was done at the end 

of each time step. Due to the redistribution of mass associated 

with redistancing, momentum and energy conservation are dif- 

ficult to control. Certainly, the energy errors are troublesome as 

these might trigger instabilities in the solver. Therefore, there is a 

desire to include the redistancing step in the strongly coupled part 

of the method. This should allow methods that are either energy 

conservative or guaranteed to be energy dissipative. This is envi- 

sioned to lead to more robust and more accurate methods. 

In this paper we present four alternative approaches which lead 

to an approximate distance field without directly solving a redis- 

tancing problem. These approaches are formulated in such a way 

that they potentially solve the non-smoothness on irregular grids. 

The paper is structured as follows, in Section 2 provides a short 

introduction to the level-set method and the regularized Heaviside 

function. In Section 3 we show that a naive definition of the regu- 

larized Heaviside can actually be non-smooth. A potential solution 

to this problem is presented. 

In Section 4 we build on the result from the previous section 

and introduce four alternative approaches to redistance the level- 

set field. All these approaches circumvent solving the difficult non- 
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linear Eikonal equation. The Eikonal equation is translated to sim- 

ple projection problems that achieve the same: a distance field 

suitable to define a smooth Heaviside. 

In Section 5 we give a short description of the numerical for- 

mulations and the finite element and isogeometric discretizations 

employed to solve the convection and redistancing problems in 

the next section. In this section, Section 6 , we first solve a sim- 

ple redistancing problem on irregular grids and then solve the vor- 

tex in a box problem using different discretizations and different 

redistancing approaches. Using these test cases we identify the 

best method, and the appropriate numerical parameters. For this 

method a mesh convergence study is performed and suitability in 

three dimensions is tested. 

In Section 7 we conclude and sketch a perspective for further 

use of the proposed methods 

2. The level set method 

The level-set method has since its origin [3] been applied to 

numerous problems involving surfaces, interfaces and shapes. Its 

application can be found in a wide range of areas from image pro- 

cessing, computer graphics, topology and shape optimisation and 

simulation of physics problems at interfaces such as crystal growth, 

or two-fluid flow. 

See, the review papers [7,8] or books [9,10] for a broad picture 

of the applications and methods available. In this paper we focus 

on level-set in combination with variational methods such as fi- 

nite element and isogeometric analysis [11] with the final goal of 

applying it to two-fluid flow. The two-fluid problem is a physical 

problem where the interface between the fluids is unknown and 

physical parameters are discontinuous across the interface. Adop- 

tion of a level-set allows for easy handling of interface topology 

changes and regularisation of the discontinuity. 

2.1. Level-sets for two-fluid problems 

In the level-set method a surface of lower dimension, such as 

an interface between two distinct materials is indirectly parame- 

terized employing a globally defined function. This function is de- 

noted as φ, and defines a surface as follows, 

�i = { x ∈ � : φ = 0 } . (1) 

This automatically leads to the following distinct subdomains, 

�− = { x ∈ � : φ < 0 } , 
�+ = { x ∈ � : φ > 0 } , (2) 

which allows the prescription of different physical parameters in 

each subdomain. For instance, the density 

ρ = 

{
ρ0 if x ∈ �−, 

ρ1 if x ∈ �+ . 
(3) 

Alternatively, the Heaviside function 

H(φ) = 

{ 

0 if φ < 0 , 
1 
2 

if φ = 0 , 

1 if φ > 0 , 

(4) 

can be used for a convex interpolation to define a density 

ρ = ρ0 (1 − H(φ)) + ρ1 H(φ) . (5) 

This has the advantage of automatically handling the interface it- 

self in a natural way. 

2.2. Regularized heaviside 

In numerical methods the sharp interfaces defined in the previ- 

ous section can lead to problems. For instance this appears when 

determining a mass matrix, M ab is approximated by quadrature 

as, 

M ab = 

∫ 
�

ρN a N b d� ≈
∑ 

i =1 ..n ip 

ρ( x i ) N a ( x i ) N b ( x i ) w i . (6) 

A sudden change of the density leads to a very bad approximation 

of the intended integral. 

To alleviate this problem the sharp Heaviside function, defined 

in Eq. (4) , is replaced by a regularized Heaviside function. This reg- 

ularized Heaviside function is often defined as 

H ε (φ) = 

{ 

0 if φ < −ε, 
1 
2 
(1 + sin ( πφ

2 ε )) if φ = 0 , 

1 if φ > ε, 

(7) 

where ε is the smoothing distance. Instead of an instantaneous 

switch from 0 to 1, this switch is spread over a finite layer around 

the interface. To have strict control over the width of this interface 

layer, we require φ, to be a signed distance function. This means it 

needs to satisfy 

‖∇φ‖ = 1 , (8) 

which is the Eikonal equation. As the regularizing is introduced 

to deal with numerical issues, such as quadrature, it is natural to 

specify the finite interface layer in terms of mesh size h as 

ε = αh. (9) 

Here α is an O (1) parameter. The meshsize can be defined unam- 

biguously for structured equidistant meshes. However, on arbitrary 

meshes this is not always straightforward. In [1,12,13] we employed 

the meshsize 

h = 

‖∇φ‖ √ ∇ φ · G ∇ φ
, (10) 

where G is the metric-tensor 

G = 

(
∂ξ

∂ x 

)T 
∂ξ

∂ x 
(11) 

where x is the physical space coordinate and ξ is the coordinate in 

parametric space pertaining to the reference element. 

This definition of h incorporates the desired directional infor- 

mation. Effectively, a length scale is extracted from the metric- 

tensor in the direction 

∇φ
‖∇φ‖ . 

3. Monotonicity on arbitrary meshes 

In this section we further discuss the smoothing of the Heav- 

iside function on arbitrary meshes. For this exposition it is useful 

to slightly rewrite the regularized Heaviside function, 

ˆ H ( ̂  φ) = 

⎧ ⎨ 

⎩ 

0 if ˆ φ < −α, 

1 
2 
(1 + sin ( π

2 

ˆ φ
α )) if ˆ φ = 0 , 

1 if ˆ φ > α, 

(12) 

where 

ˆ φ = 

φ

h 

(13) 

is the scaled distance. In other words, if φ is the actual distance 

to the interface, expressed in for instance mm or m , then 

ˆ φ can 

be thought of as that same distance but expressed in number of 

elements , that is a multiple of a typical element length. However, 

since this scaling occurs locally, the variation of h along the path–

from interface to the point under consideration – is not taken into 

account. Therefore, this rescaled distance is only an effective esti- 

mate if h varies only mildly (or not at all) across the interface. 
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