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a b s t r a c t 

A robust diffuse-interface formulation is applied to simulate miscible and immiscible radial flows in hetero- 

geneous porous media, in which the permeability is characterized by a log Gaussian distribution. The stabi- 

lizing effects of linear injection scheme, determined by the fingering interfacial length, are investigated to 

verify its applicability in various conditions of miscibility and permeability heterogeneity. For fully miscible 

conditions, the linear injection scheme shows destabilizing effects both in homogeneous and heterogeneous 

media. On the other hand, even the immiscible fingering instability in a homogenous medium can be sup- 

pressed effectively by applying the linear injection scheme, the stabilizing effect on such a linear injection 

scheme is insignificant in a heterogeneous medium. 

© 2015 Elsevier Ltd. All rights reserved. 

1. Introduction 

Viscous fingering of the Saffman–Taylor instability [1] arises when 

a more viscous fluid is displaced by another fluid of lower viscos- 

ity in a porous medium or Hele-Shaw cell. Particularly, the viscous 

fingering problem driven by radial injection had been investigated 

for several decades [2] , because of its important applications to en- 

hanced oil recovery [3–5] . In oil recovery processes, once the actively 

evolving branched fingers of injected less viscous fluid reach the pro- 

duction well, only insignificant amount of the more viscous crude oils 

can be further retrieved. To improve the oil recovery efficiency, recent 

efforts have been focused on effectively controlling the fingering pat- 

terns in a homogeneous porous media (or Hele-Shaw cell) by time- 

dependent injection schemes [6–11] . A strategy of time-dependent 

injection scheme for miscible fluids is designed by variant injection 

strength scaled with time like t −1 / 3 [6] . On the other hand, several in- 

vestigations tackled the problem with immiscible fluids in a similar 

exponentially time-dependent injection scheme [7–9] . Under these 

time-dependent injection schemes, the traditional multi-branched 

patterns are significantly constrained. Furthermore, an optimal lin- 

ear injection scheme is proposed in an immiscible condition to min- 

imize the growth of interfacial amplitudes [10] . This optimal linear 

injection scheme has been generally verified for immiscible or par- 

tially miscible cases, in which surface tension or effective interfacial 

tension (or the so-called Korteweg stress) respectively plays an im- 

portant role in stabilization [11] . Nevertheless, the stabilizing effects 
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are not conclusive in a miscible interface because of vigorous sec- 

ondary fingering phenomena, e.g., merging and tip-split, which might 

be triggered immediately after the injection [11] . 

These time-dependent injection schemes are all developed in a 

homogeneous porous medium, i.e., Hele-Shaw cell. However, the het- 

erogeneous distribution of permeability in many porous environ- 

ments in practical applications, e.g., reservoir rocks, may strongly af- 

fect the fingering instability. For instance, the flow shows preferred 

path due to the permeability heterogeneity, and might result in un- 

desired faster arrivals of the injected fluid to reach the production 

well [12–14] . In addition, simulations show the flow paths are dic- 

tated by the permeability field for sufficiently strong heterogene- 

ity [15–20] . An interesting question arises if these time-dependent 

scheme coupled with the permeability heterogeneity, particularly the 

optimal linear injection scheme, can still effectively constrain the 

emergence of fingering instability in different miscibility conditions? 

These can be numerically achieved by a diffuse-interface approach 

of the Darcy–Cahn–Hilliard model [20] , an analogy of the so-called 

Hele-Shaw–Cahn–Hilliard equations [11,21–25] . By properly choos- 

ing profiles of the interfacial free energy, this diffuse-interface for- 

mulation is capable of dealing with immiscible and miscible inter- 

faces. In the present study, we focus on the fingering patterns induced 

by the linear injection scheme in a heterogeneous porous medium. 

In addition, quantitative measures will be presented to determine 

the applicability of such a linear injection scheme to fingering con- 

trol. This paper consists of three additional sections. The theoretical 

background, and the numerical methods are introduced in Section 2 . 

Numerical results and conclusions are discussed and summarized in 

Section 3 and Section 4 , respectively. 
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2. Physical problem 

2.1. Governing equations 

We consider a two-dimensional porous medium with heteroge- 

neous permeability k ( x, y ). A less viscous fluid 1 (viscosity η1 ) is in- 

jected to displace another more viscous fluid 2 (viscosity η2 ) origi- 

nally occupying the medium. These two incompressible fluids can be 

either immiscible or fully miscible to each other. Initially, the fluid–

fluid interface is a small circular core of diameter D 0 , and a Carte- 

sian coordinate system ( x, y ) is defined in such a way that its origin 

is located at the center of this core region. The less viscous fluid is 

injected at a point source located at the origin. The process contin- 

ues up to a time t = t f , when the area of the injected fluid expands 

to πD f 
2 /4 in a stable injection condition without fingering instability. 

The injection strength Q ( t ), equal to the area covered per unit depth, 

follows a linear injection rate proposed in Refs. [10,11] , so that in- 

jection rate is given by Q(t) = π(D f − D 0 )(D 0 t f + (D f − D 0 ) t) / 2 t f 
2 . 

Driven by the action of injection, as time progresses the interface 

becomes unstable. The governing equations for a diffuse-interface 

approach based on the Darcy–Cahn–Hilliard , or Hele-Shaw–Cahn–

Hilliard, model can be written as [21,24,25] 

∇ · u = 0 , (1) 

∇p = −η

k 
u − ερ∇ ·

[
(∇c)(∇c) T 

]
, (2) 

ρ

(
∂c 

∂t 
+ u ·∇c 

)
= α∇ 

2 μ, (3) 

μ = 

∂ f 0 
∂c 

− ε∇ 

2 c. (4) 

Here, u , p, ρ and η denote the velocity vector, the pressure, the den- 

sity and the viscosity, respectively. The phase-field variables c of the 

injected and the surrounding displaced fluids are set as c = 1 and 

c = 0 , respectively. The constant ε represents the coefficient of cap- 

illary, while the constant α denotes the coefficient of mobility. The 

chemical potential is μ, and f 0 is the classical part of the free energy 

(or the Helmholtz free energy). 

In this diffuse-interface framework, the viscosity ( η) correlation 

of fluids is assumed to be related to the phase-field variable ( c ) deter- 

mined by a constant parameter R as [4,17] 

η(c) = η1 e 
[ R (1 −c)] , R = ln 

(
η2 

η1 

)
. (5) 

Permeability fields k ( x, y ) associated with desired statistical distribu- 

tion are expressed in terms of a characteristic value K and random 

function g ( x, y ), whose Gaussian distribution is characterized by the 

variance s and the spatial correlation scale l . An algorithm originally 

provided by Shinozuka and Jen [26] is employed to generate the per- 

meability distributions [15–17,20] , which is described by 

k (x, y ) = Ke g(x,y ) , (6) 

g(x, y ) = s 2 exp 

(
−π

[(
x 

l 

)2 

+ 

(
y 

l 

)2 
])

. (7) 

We follow the undimensional processes applied in Ref. [20] , such 

that D f and t f are taken as the characteristic scales. Furthermore, the 

pressure and the free energy are scaled by (η1 D 

2 
f 
) / (Kt f ) and a char- 

acteristic specific energy f ∗, respectively. Thus, the dimensionless ver- 

sions of the governing equations are 

∇ · u = 0 , (8) 

∇p = −η

k 
u − C 

I 
∇ ·

[
(∇c)(∇c) T 

]
, (9) 

∂c 

∂t 
+ u ·∇c = 

1 

Pe 
∇ 

2 μ, (10) 

μ = 

∂ f 0 
∂c 

− C∇ 

2 c. (11) 

Dimensionless parameters, such as the Atwood number A (normal- 

ized viscosity contrast), the Péclet number Pe, the Cahn number C , 

and the injection strength I are defined as 

Pe = 

ρD 

2 
f 

α f ∗t f 
, A = 

e R − 1 

e R + 1 

, C = 

ε

D 

2 
f 

f ∗
, I = 

η1 D 

2 
f 

ρ f ∗Kt f 
. 

The diffusional Péclet number and the Cahn number are the non- 

dimensional measures of the dissipation and dispersion in the model 

[27] . 

Profiles of the free energy govern miscibility of the fluid interface 

[11,20,21] . To separate the fluid phases for an immiscible interface, a 

concave profile of the free energy should be prescribed. The dimen- 

sionless expression applied in Refs. [24,25] is used to simulate the 

condition of two immiscible fluids as 

f 0 = c 2 (1 − c) 2 . (12) 

By this formulation, the dimensionless surface tension, denoted as σ , 

on the immiscible interface associated with a given spatial variable ζ
can be expressed as [11,25] 

σ = 

1 

I 

∫ [ 

f 0 + 

C 

2 

(
∂c 

∂ζ

)2 
] 

dζ . (13) 

On the other hand, the phases are allowed to mix if a convex free 

energy profile is applied [11,20,21] , which is suitable for a miscible 

interface. To include the diffusion between two miscible fluids, we 

prescribe the dimensionless free energy as 

f 0 = 

1 

2 

(
c − 1 

2 

)2 

. (14) 

By further assuming C = 0 , the phase variable equations, e.g., 

Eqs. (10) and (11) , converge to the conventional advection–diffusion 

equation as 

∂c 

∂t 
+ u ·∇c = 

1 

Pe 
∇ 

2 c. (15) 

2.2. Numerical schemes 

The numerical methods we employ in this work are similar to 

the ones developed in Refs. [4,11,17,20,24] , in which the governing 

equations are reformulated into the well known streamfunction ( φ)–

vorticity ( ω) system, and yield 

u = 

∂φ

∂y 
, v = −∂φ

∂x 
(16) 

∇ 

2 φ = −ω, (17) 

ω = −R 

(
u 

∂c 

∂y 
− v 

∂c 

∂x 

)
− 1 

k 

(
u 

∂k 

∂y 
− v 

∂k 

∂x 

)

+ 

k 

η

C 

I 

[
∂c 

∂x 

(
∂ 3 c 

∂ x 2 ∂ y 
+ 

∂ 3 c 

∂y 3 

)
− ∂c 

∂y 

(
∂ 3 c 

∂ x∂ y 2 
+ 

∂ 3 c 

∂x 3 

)]
. (18) 

Since presence of the point source, which involves singularity at 

the origin, the total velocity is divided into two components, the rota- 

tional ( u rot ) and potential ( u pot ) parts. The rotational part of the veloc- 

ity, induced by viscosity contrast and heterogeneity, is obtained nu- 

merically. The potential radial velocity by injection is smoothed out 
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