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a b s t r a c t 

In this paper, a three-field finite element stabilized formulation for the incompressible viscoelastic fluid 

flow problem is tested numerically. Starting from a residual based formulation, a non-residual based one 

is designed, the benefits of which are highlighted in this work. Both formulations allow one to deal with 

the convective nature of the problem and to use equal interpolation for the problem unknowns σ − u −
p (deviatoric stress, velocity and pressure). Additionally, some results from the numerical analysis of the 

formulation are stated. Numerical examples are presented to show the robustness of the method, which 

include the classical 4: 1 planar contraction problem and the flow over a confined cylinder case, as well 

as a two-fluid formulation for the planar jet buckling problem. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

The finite element approximation of the flow of viscoelastic flu- 

ids presents several numerical difficulties, particularly for the spa- 

tial approximation. On the one hand, the finite element approxi- 

mation used must satisfy two compatibility or inf-sup conditions, 

the first between velocity-pressure and the second associated to 

the interpolation of velocity and stress [1,2] . On the other hand, 

the convective nature presented both in the momentum and con- 

stitutive equation may lead to numerical instabilities. 

The advective nature of the constitutive equation makes it nec- 

essary to use a stabilized formulation to avoid global oscillations. 

In the context of the finite element method, many algorithms have 

been developed to solve this problem: the classical SUPG method 

and its non-consistent counterpart, the SU method [3] , the GLS 

method [4,5] , and the stabilization based on the discontinuous 

Galerkin method [6] . In the present work, we apply two stabilized 

formulations based on the Variational Multiscale (VMS) framework 

introduced by Hughes et al. [7] for the scalar convection-diffusion- 

reaction problem, and extended later to the vectorial Stokes prob- 

lem in [8] , where the space of the sub-grid scales is taken orthog- 

onal to the finite element space. As we shall see, this is an impor- 

tant ingredient in the design of our formulations. 
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The starting point of a VMS approach is to split the unknowns 

of the problem into two components, namely, the component that 

can be approximated by the finite element mesh and the unresolv- 

able one, called sub-grid scale or simply sub-scale in what follows. 

The latter needs to be approximated in a simple manner in terms 

of the former, so as to capture its main effect and yield a stable 

formulation for the finite element unknown. There are different 

ways to approximate the sub-scale and, in particular, to choose the 

space where it is taken. We will describe two formulations which 

precisely differ in this choice. Both formulations will allow one to 

deal with the instabilities of the three-field viscoelastic formula- 

tion described earlier. There will be no need to meet the inf-sup 

conditions for the interpolation spaces and it will be possible to 

solve convection dominated problems both in the momentum and 

in the constitutive equation. For the latter, these methods have 

been found to work well. However, for the momentum equation 

we have observed that they are not robust in the presence of high 

gradients of the unknowns, and therefore we have had to mod- 

ify them. The modification consists in designing a sort of term-by- 

term stabilization based on the choice of subscales orthogonal to 

the finite element space. We will describe in detail this method 

and the need for it. 

The work is organized as follows. Section 2 contains the pre- 

sentation of the problem. Section 3 presents our stabilized finite 

element approach. Section 4 is devoted to the numerical analysis 

results and Section 5 contains typical numerical examples used for 

this kind of fluids. Finally, in Section 6 conclusions are summa- 

rized. 
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2. The viscoelastic flow problem 

2.1. Boundary value problem 

To simulate the transitory incompressible and isothermal flow 

of viscoelastic fluids, one needs solve the momentum balance 

equation, the continuity equation and a constitutive equation that 

defines the viscoelastic contribution of the fluid. 

The conservation equations for momentum and mass may be 

expressed as: 

ρ
∂ u 

∂t 
+ ρu · ∇ u − ∇ · T + ∇p = f in �, t ∈ ]0 , t f [ , (1) 

∇ · u = 0 in �, t ∈ ]0 , t f [ (2) 

where � is the computational domain of R 

d occupied by the fluid, 

]0, t f [ is the time interval where the problem is solved, ρ denotes 

the constant density, p : � → R the pressure, u : � → R 

d the ve- 

locity vector, f : � → R 

d the force vector and T : � → R 

d 
� R 

d the 

deviatoric extra stress tensor which can be defined in terms of a 

viscous and a viscoelastic or elastic contribution as: 

T = 2 βη0 ∇ 

s u + σ (3) 

where β ∈ [0, 1] is a real parameter (ratio) to define the amount 

of viscous or solvent viscosity βη0 and elastic or polymeric vis- 

cosity ( 1 − β) η0 in the fluid. For viscoelastic fluids, the problem 

is incomplete without the definition of a constitutive equation for 

the elastic part of the extra stress tensor ( σ). A large variety of ap- 

proaches exist to define it (see [9,10] for a complete description). 

In this work, only the differential Oldroyd–B model is considered. 

It reads: 

λ

2 η0 

∂ σ

∂t 
+ 

1 

2 η0 

σ − ( 1 − β) ∇ 

s u 

+ 

λ

2 η0 

(
u · ∇ σ − σ · ∇ u − ( ∇ u ) 

T · σ
)

= 0 in �, t ∈ ]0 , t f [ (4) 

where λ is the relaxation time. 

Calling U = [ u , σ, p ] , F = [ f , 0 , 0 ] and defining 

L ( ̂  u , U ) 

:= 

⎛ 

⎝ 

ρ ˆ u · ∇ u − 2 βη0 ∇ · ( ∇ 

s u ) − ∇ · σ + ∇p 
∇ · u 

λ
2 η0 

∂ σ
∂t 

+ 

1 
2 η0 

σ−(1 −β) ∇ 

s u + 

λ
2 η0 

( ̂  u · ∇ σ−σ · ∇ ̂

 u −
(∇ ̂

 u 

)T · σ) 

⎞ 

⎠ 

(5) 

and 

T ( U ) := 

⎛ 

⎝ 

ρ ∂ u 
∂t 

0 

λ
2 η0 

∂ σ
∂t 

⎞ 

⎠ (6) 

we may write (1), (2) and (4) using the definition (3) as T ( U ) + 

L ( ̂ u , U ) = F . 

Initial and boundary conditions have to be appended to prob- 

lem (1) –(4) . For simplicity in the exposition, we will consider the 

simplest boundary condition u = 0 on ∂�, and no boundary con- 

ditions for σ . However, due to the hyperbolic nature of the consti- 

tutive equation, in some examples the elastic stresses are fixed on 

the inflow part of the boundary. For a complete description of the 

mathematical structure of the problem we refer to [11] . 

2.2. The variational form 

We introduce some notation in order to write the weak form of 

the problem. The space of square integrable functions in a domain 

ω is denoted by L 2 ( ω), and the space of functions whose distribu- 

tional derivatives of order up to m ≥ 0 (integer) belong to L 2 ( ω) by 

H 

m ( ω). The space H 

m 

0 ( ω ) consists of functions in H 

1 ( ω) vanishing 

on ∂ω. The topological dual of H 

1 
0 ( �) is denoted by H 

−1 ( �) , the 

duality pairing by 〈 ·, ·〉 , and the L 2 inner product in ω (for scalar, 

vectors and tensors) is denoted by ( ·, ·). The norm in a functional 

space X will be denoted by ‖ · ‖ X , except when X = L 2 (�) , case in 

which the subscript will be omitted. 

Using this notation, the stress, velocity and pressure functional 

spaces for the continuous problem are ϒ0 = L 2 
(
0 , t f ; (H 

1 
0 
(�)) d×d 

sym 

)
(the subscript sym standing for symmetric tensors), V 0 = 

L 2 
(
0 , t f ; (H 

1 
0 (�)) d 

)
and Q = D 

(
0 , t f ; (L 2 (�) / R ) 

)
( D standing for 

distributions), respectively. The weak form of the problem consists 

in finding U = [ u , p, σ] ∈ X = V 0 × Q × ϒ0 , such that: (
ρ

∂ u 

∂t 
, v 

)
+ 2 ( βη0 ∇ 

s u , ∇ 

s v ) + 〈 ρu · ∇ u , v 〉 
+ ( σ, ∇ 

s v ) − ( p, ∇ · v ) = 〈 f , v 〉 (7) 

( q, ∇ · u ) = 0 (8) 

(
λ

2 η0 

∂ σ

∂t 
, τ

)
+ 

(
1 

2 η0 

σ, τ
)

− ( ( 1 − β) ∇ 

s u , τ) 

+ 

λ

2 η0 

(
u · ∇ σ − σ · ∇ u − ( ∇ u ) 

T · σ, τ
)

= 0 (9) 

for all V = [ v , q, τ] ∈ 

ˆ X (the time independent counterpart of X ), 

where f ∈ 

(
0 , t f ; (H 

−1 (�)) 
)
. 

In a compact form, the problem (7) –(9) can be written as: (
ρ

∂ u 

∂t 
, v 

)
+ 

(
λ

2 η0 

∂ σ

∂t 
, τ

)
+ B ( u ;U , V ) = 〈 f , v 〉 

for all V ∈ 

ˆ X , where 

B 

(
ˆ u ;U , V 

)
= 2 ( βη0 ∇ 

s u , ∇ 

s v ) + 

〈
ρ ˆ u · ∇ u , v 

〉
+ ( σ, ∇ 

s v ) 

− ( p, ∇ · v ) + ( q, ∇ · u ) 

+ 

(
1 

2 η0 

σ, τ
)

− ( ( 1 − β) ∇ 

s u , τ) 

+ 

λ

2 η0 

(
ˆ u · ∇ σ − σ · ∇ ̂

 u −
(∇ ̂

 u 

)T · σ, τ
)

(10) 

3. Numerical approximation 

3.1. Galerkin finite element discretization 

The standard Galerkin approximation for the variational prob- 

lem can be performed by considering a finite element partition T h 
of the domain �. The diameter of an element domain K ∈ T h is de- 

noted by h K and the diameter of the element partition is defined 

by h = max { h K | K ∈ T h } . Under the above considerations, we can 

construct conforming finite elements spaces, V h, 0 ⊂ V 0 , Q h ⊂ Q 

and ϒh, 0 ⊂ ϒ0 in the usual manner. If X h = V h, 0 × Q h × ϒh, 0 , and 

U h = [ u h , p h , σh ] , the Galerkin finite element approximation con- 

sist in finding U h ∈ X h , such that: (
ρ

∂ u h 

∂t 
, v h 

)
+ 

(
λ

2 η0 

∂ σh 

∂t 
, τh 

)
+ B ( u h ;U h , V h ) = 〈 f , v h 〉 (11) 

for all V h = [ v h , q h , τh ] ∈ 

ˆ X h . 

In principle, we have posed no restrictions on the choice of the 

finite element spaces. However, there are restrictions that must 

be satisfied explicitly in the discrete formulation used. These are 

the same as for the three-field formulation of the Stokes problem 
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