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a b s t r a c t 

The Laplace operator appears in the governing equations of continua describes dissipative dynamics, and 

it also emerges in some second order partial differential equations such as the Poisson equation. In this 

paper, accuracy and its convergence rates of some meshfree discretization schemes for the Laplace oper- 

ator are studied as a verification. Moreover, a novel meshfree discretization scheme for the second order 

differential operator which enables us to use smaller dilation parameter of the compact support of the 

weight function is proposed, and its application for the meshfree discretization of the Poisson equation 

demonstrates an improvement of the solution accuracy. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

The Laplace operator, or the Laplacian, denoted by symbols ∇ 

2 

or �, is a second order differential operator given by the diver- 

gence of the gradient of a function in d -dimensional Euclidian 

space. It appears in a lot of second order differential equations 

that describe physical phenomena, and they can be categorized 

into three types: parabolic, hyperbolic, and elliptic type. These are 

important mathematical representations of physics. Furthermore, 

in the field of fluid dynamics, the Laplace operator occurs in the 

viscosity (dissipative dynamics) and the pressure Poisson equa- 

tion; therefore, numerical analyses of differential equations with 

the Laplace operator, and their discretization procedures, are of in- 

terest for computational fluid dynamics. 

Various numerical methods have been developed for the so- 

lution of ordinary/partial differential equations. For instance, the 

Finite Element Method(FEM), the Finite Difference Method(FDM), 

and the Finite Volume Method(FVM), are widely utilized method- 

ologies. Their common feature is that they divide a spatial domain 

into a set of discrete subdivisions so-called mesh, grid, or cell, 

which requires pre-defined and fixed connectivity of nodes. Alter- 

natively, variety of meshfree methods, which establish a system of 

algebraic equations without the use of pre-defined mesh/grid/cell, 

have been vigorously sought in order to find better discretization 
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procedures without mesh-constraints. Particle methods based on 

the Lagrangian description are one of the meshfree methods which 

make the most of meshfree talent, and their most important ad- 

vantage is that they can easily handle simulations of very large 

deformations, even with the changes of the topological structure 

and fragmentation-coalescence of continua. 

The Smoothed Particle Hydrodynamics(SPH) method [1,2] and 

the Moving Particle Semi-implicit(MPS) method [3,4] are exten- 

sively used strong-form meshfree and particle methods for nu- 

merical analysis of fluid flow with free surfaces. Although they 

have been shown to be useful in engineering applications, their 

standard formulae of spatial discretization schemes of the gra- 

dient, the divergence, and the Laplace operators lack polynomial 

completeness (reproducing conditions); therefore, inconsistencies 

of spatial discretization procedures have been resulted in adverse 

effects for both computational accuracy and stability. In order to 

overcome the inconsistency problem of meshfree discretizations, 

the (weighted) least squares method or equivalents have been uti- 

lized in various meshfree and/or particle methods (e.g. [5–14] ), and 

Least Squares Moving Particle Semi-implicit (LSMPS) method [15] 

is one of the methods based on the least squares technique. En- 

hancement of accuracy and stability compared with the existing 

MPS method [3,4] were demonstrated through a applicative vali- 

dation test problem [15] ; however, convergence tests for the sec- 

ond order derivative approximations of the LSMPS method have 

not been well examined. 

In this paper, the consistency of the second order derivative ap- 

proximations for the strong-form particle methods including the 
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LSMPS method are focused on, and the convergence of some mesh- 

free particle discretization schemes for the Laplace operator are 

studied as a verification. Moreover, a novel meshfree discretization 

scheme for the second order differential operator which enables 

us to use smaller dilation parameter of the compact support of the 

weight function is proposed. 

2. Meshfree discretization schemes for the Laplace operator 

In this section, an overview of meshfree spatial discretization 

schemes for the Laplace operator (second order derivative approx- 

imations of the SPH method, the MPS method, and the LSMPS 

method) is presented. Furthermore, a novel scheme for the second 

order differential operator which enables us to utilize smaller di- 

lation parameter of the compact support of the weight function is 

derived. 

2.1. The Smoothed Particle Hydrodynamics method approximations 

The Smoothed Particle Hydrodynamics (SPH) method was orig- 

inally developed for the field of astrophysics by Lucy [1] , and Gin- 

gold and Monaghan [2] in 1977, and it has been applied for nu- 

merical analyses of fluid flows and structures (Early contributions 

have been reviewed in several articles, for instance, [16–20] ). In 

what follows, the SPH method is presented as one of the meshfree 

discretization methods. 

The SPH interpolation is based on the following simple concept, 

f ( x ) = 

∫ 
R d 

δ(x 

′ − x ) f (x 

′ ) dx 

′ , ∀ x ∈ R 

d , (1) 

where δ( x ) is the Dirac delta distribution, and the key ingredient 

of the SPH method is to replace the Dirac delta distribution with 

well-behaved smoothing kernel function w ( x ; h ) ( h is a smoothing 

length) that mimics the useful properties of the Dirac delta dis- 

tribution. Whereafter, a SPH smoothing interpolation is discretized 

for a set of scattered nodes { x j } 1 ≤ j ≤ N , i.e., 

〈 f (x ) 〉 = 

∫ 
R d 

w (x 

′ − x ; h ) f (x 

′ ) dx 

′ , (2) 

≈
∑ 

j 

w (x j − x ; h ) f j �V j , (3) 

where �V j denotes nodal measures of point x j , and f j = f (x j ) . 

Note that a part w (x j − x ; h )�V j in Eq. (3) can be seen as a shape 

function in the finite element discretization procedure. The deriva- 

tives of a function are obtained by differentiating the discrete in- 

terpolated function, for instance, the gradient of a function f is ap- 

proximated by 

〈 ∇ f (x ) 〉 ≈ ∑ 

j 

[∇w (x j − x ; h ) 
]

f j �V j . (4) 

Following the same procedure yields a SPH approximation for the 

Laplacian of a function f : 〈∇ 

2 f (x ) 
〉
≈
∑ 

j 

[∇ 

2 w (x j − x ; h ) 
]

f j �V j . (5) 

This formulation, however, is not used today since its accuracy 

and solution stability depend strongly on the nodal distribution 

[16,21,22] and it lacks polynomial completeness conditions. Al- 

ternatively, some approximating discretization schemes for the 

Laplace operator have been utilized in the SPH method. 

2.1.1. Brookshaw type SPH formula 

Brookshaw [23] proposed the following SPH formulation for the 

approximation of the Laplacian of a function: 〈∇ 

2 f (x ) 
〉
i 
≈
∑ 

j∈ �i 

∇ i w (x j − x i ; h ) · (x j − x i ) 

‖ x j − x i ‖ 

2 

(
f j − f i 

)
�V j , (6) 

= 

∑ 

j∈ �i 

[
1 

r i j 

∂w (x j − x i ; h ) 

∂r i j 

�V j 

]
( f j − f i ) , (7) 

where ∇ i = ∇ | x = x i , r i j = ‖ x j − x i ‖ , and �i stands for sets of neigh- 

boring nodes x j that locate in the compact support of the kernel 

function of the node x i . It should be mentioned that this discretiza- 

tion scheme forms a finite difference like formula: 〈∇ 

2 f (x ) 
〉
i 
≈
∑ 

j∈ �i 

C i j ( f j − f i ) , (8) 

and various discretization schemes based on finite difference like 

formulae have been proposed for the SPH method (e.g. [24,25] ). 

Morris [26] applied this brookshaw type SPH formula of the ap- 

proximating Laplace operator for discretization of the viscosity 

term in the Navier–Stokes equations, and this scheme [23,26] is 

one of the most widely used formulae in the SPH method for dis- 

cretization of the Laplacian; therefore, the accuracy of Brookshaw 

type SPH Laplace operator ( Eq. (6) ) will be investigated numeri- 

cally, later in this study. 

2.1.2. Monaghan and Gingold type SPH formula 

Monaghan and Gingold [27] proposed the following formula for 

discretization of the viscosity term of fluid flows: 〈
μ∇ 

2 u 

〉
i 
≈ 2(d + 2) μ

∑ 

j∈ �i 

∇ i w (x j − x i ; h ) 
(x j − x i ) · (u j − u i ) 

‖ x j − x i ‖ 

2 
�V j , 

(9) 

= 2(d + 2) μ
∑ 

j∈ �i 

[∇ i w (x j − x i ; h )(x j − x i ) 
T 

‖ x j − x i ‖ 

2 

]
(u j − u i )�V j , (10) 

= 2(d + 2) μ
∑ 

j∈ �i 

[
1 

r 3 
i j 

∂w (x j − x i ; h ) 

∂r i j 

�V j (x j − x i )(x j − x i ) 
T 

]
(u j − u i ) , (11) 

where μ denotes the dynamic viscosity, and u stands for the veloc- 

ity vector. This formulation for discretization of the viscosity term 

is also a widely utilized scheme in the SPH method, however, this 

model do not satisfy the Stokes hypothesis as pointed out by Co- 

lagrossi et al. [28] . The consequence of this fact have not been 

studied deeply and its study of accuracy and inconsistency in the 

Stokes hypothesis will be postponed for future studies. 

2.2. The Moving Particle Semi-implicit method approximations 

The Moving Particle Semi-implicit method [3,4] was developed 

by Koshizuka and Oka for numerical analyses of incompressible 

flows with free surfaces. Since the MPS method requires to dis- 

cretize the pressure Poisson equation and the viscosity term, vari- 

ety of spatial discretization schemes for the Laplace operator have 

been proposed. 

2.2.1. Koshizuka and Oka type formula 

Koshizuka and Oka [3] proposed the following “particle interac- 

tion model” to discretize the Laplace operator: 〈∇ 

2 f (x ) 
〉
i 
≈ 2 d 

λn 

∑ 

j∈ �i 

w (x j − x i ; h )( f j − f i ) , (12) 
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