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a b s t r a c t 

The accurate monotonicity-preserving (MP) scheme of Suresh and Huynh (1997) [5] is a high-order and 

high-resolution method for hyperbolic conservation laws. However, the robustness of the MP scheme is 

not very high. In this paper, a detailed analysis on this scheme is performed, and two potential causes 

which may account for the weak robustness are revealed. Furthermore, in order to enhance the robust- 

ness of the MP scheme, an improved version of the MP scheme is presented, in which a strict continuous 

total-variation-diminishing (TVD) numerical flux is used at a disturbed discontinuity so that oscillations 

cannot grow indefinitely without violating the TVD condition. Without destroying the very high resolu- 

tion property, numerical tests show that the improved scheme shares a strong robustness in simulating 

extreme numerical tests. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

As is well known, flows involving multi-scales and disconti- 

nuities occur widely in many natural phenomena and engineer- 

ing applications [1,2] . In terms of simulating the flows, numerical 

schemes must be high-order accurate in smooth regions to resolve 

the multi-scales, and essentially oscillation-free near discontinu- 

ities to capture features such as shock waves. Consequently, the 

development of high-order shock-capturing schemes is of impor- 

tance. 

Van Leer [3] first showed that it is beneficial to strive for 

schemes with a high order of accuracy while capturing shock 

waves in an essentially oscillation-free manner. By using piece- 

wise linear interpolation, coupled with a limiting strategy to con- 

trol oscillations at discontinuities, he designed a second-order 

monotonicity-preserving version of the Godunov scheme. Later, 

Colella and Woodward [4] developed the piecewise parabolic 

method (PPM), which employs a four-point centered stencil to de- 

fine the numerical flux; this numerical flux is then limited to 

control oscillations. Following this limiting approach, Suresh and 

Huynh [5] proposed the accurate monotonicity-preserving (MP) 
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scheme. In the MP scheme, starting with a primary numerical flux 

calculated by any high-order scheme, the following two procedures 

are executed: (1) calculate a local interval, which is designed by 

enlarging the first-order monotonicity-preserving interval derived 

in [5] , and (2) maintain/replace the primary numerical flux accord- 

ing to the relation between the primary numerical flux and this 

local interval: (i) if the primary numerical flux lies in this local 

interval, it is maintained, and (ii) if the primary numerical flux 

is beyond this local interval, it is replaced by the nearest bound 

of this local interval. The key feature of the MP scheme is that 

this local interval is designed to have the following property—it is 

very large in smooth regions so that it contains the primary nu- 

merical flux, and automatically degenerates to the monotonicity- 

preserving interval at discontinuities. That is to say, this local in- 

terval will enlarge for non-monotonic data in order to achieve the 

accuracy-preserving property, and automatically degenerates to the 

monotonicity-preserving interval for monotonic data. Due to this 

property, the total variation of the numerical solution in the MP 

scheme is allowed to increase only for non-monotonic data, and 

diminish for monotonic data [6] . 

The recent development of the MP scheme mainly focuses 

on the problem of calculating the primary numerical flux. In 

the original paper, the fifth-order upwind scheme is adopted [5] . 

Later, some other schemes are tested, such as the fifth-order 

compact upwind scheme [7] or center schemes with controllable 

http://dx.doi.org/10.1016/j.compfluid.2016.09.002 

0045-7930/© 2016 Elsevier Ltd. All rights reserved. 

http://dx.doi.org/10.1016/j.compfluid.2016.09.002
http://www.ScienceDirect.com
http://www.elsevier.com/locate/compfluid
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compfluid.2016.09.002&domain=pdf
mailto:tian_baolin@iapcm.ac.cn
http://dx.doi.org/10.1016/j.compfluid.2016.09.002


2 Z. He et al. / Computers and Fluids 140 (2016) 1–10 

artificial dissipation [8,9] . Balsara and Shu [10] even adopt a high- 

order weighted essentially non-oscillatory (WENO) scheme to ob- 

tain the primary numerical flux, yielding high-order monotonicity- 

preserving WENO schemes. Daru and Tenaud [6] reinterpreted the 

local interval in MP schemes as TVD-like conditions, and applied 

these conditions to a one-step scheme. 

The MP scheme shows high-resolution for multi-scale problems. 

Therefore, it is widely adopted in practical applications [11,12] . 

However, the robustness of the MP scheme is not very high, com- 

pared with the popular WENO methods [13] . In this paper, we per- 

form a detailed analysis of the MP scheme, trying to reveal the 

potential causes which may account for the weak robustness of 

the MP scheme. Furthermore, in order to enhance the robustness 

of the MP scheme, a simple modification is proposed to suppress 

the numerical oscillations more efficiently and/or to prevent the 

appearance of numerical oscillations as possible. Numerical tests 

show that the improved MP scheme shows a more strong robust- 

ness. 

2. Method 

2.1. Framework 

Consider the following one-dimensional linear advection equa- 

tion 

∂u 

∂t 
+ 

∂ f (u ) 

∂x 
= 0 (1) 

with constant advection speed, i.e. df 
du 

= a . Without loss of gener- 

ality, assume that a ≥ 0. Eq. (1) is discretized in a uniform grid 

defined by the points x i = i �x, i = 1 , · · · , N, with cell boundaries 

given by x i +1 / 2 = x i + 

�x 
2 , where �x is the uniform grid spacing. 

The spatial discretization is obtained by implicitly defining the nu- 

merical flux function h ( x ) as 

f (x ) = 

1 

�x 

∫ x + �x 
2 

x − �x 
2 

h (ξ ) d ξ , (2) 

such that the spatial derivative in Eq. (1) is exactly approximated 

by a conservative finite difference formula at the cell boundaries, 

d u i (t) 

d t 
= −h i +1 / 2 − h i −1 / 2 

�x 
, (3) 

where h 
i ± 1 

2 
= h (x 

i ± 1 
2 
) , and u i ( t ) is a numerical approximation to 

the point value u ( x i , t ). In practice, Eq. (3) is approximated as 

d u i (t) 

d t 
≈ −

̂ f i +1 / 2 − ̂ f i −1 / 2 

�x 
, (4) 

where numerical fluxes ̂ f 
i ± 1 

2 
, reconstructed from known cell av- 

erage values f i , are approximations of h 
i ± 1 

2 
. Then Eq. (4) can be 

marched by one time step or substep of TVD Runge–Kutta schemes 

[14] : 

u 

n +1 
i 

≈ u 

n 
i −

�t 

�x 

(̂ f n i +1 / 2 − ̂ f n i −1 / 2 

)
, (5) 

where �t is the time step, u n +1 
i 

the numerical approximation to 

the point value u ( x i , t ) at time level t n +1 , and 

̂ f n 
i ± 1 

2 

is the numerical 

flux at time level t n (the superscript n in 

̂ f n 
i ± 1 

2 

is omitted for brevity 

hereafter). 

2.2. The accurate monotonicity-preserving (MP) scheme 

When the MP scheme [5] is used to calculate the numerical flux ̂ f i +1 / 2 in Eq. (5) , it is implemented as follows. 

2.2.1. Some notations used in the MP scheme 

First of all, we introduce some definitions used in the accurate 

monotonicity-preserving (MP) scheme. The first one is the minmod 

function for q arguments [15] : 

minmod (z 1 , z 2 , · · · z q ) := s · min (| z 1 | , | z 2 | , · · · , | z q | ) , (6) 

where 

s = 

1 

2 

(sgn (z 1 ) + sgn (z 2 )) 

∣∣∣1 

2 

(sgn (z 1 ) 

+ sgn (z 3 )) · · · 1 

2 

(sgn (z 1 ) + sgn (z q )) 

∣∣∣, 
and sgn ( z ) is a function that returns the sign of the argument z . 

The second one is the definition of an interval [15] : 

I[ z 1 , z 2 , · · · , z q ] := [ min (z 1 , z 2 , · · · , z q ) , max (z 1 , z 2 , · · · , z q )] . (7) 

The third one is the definition of the local curvature d MM 

i +1 / 2 
[5] : 

d MM 

i +1 / 2 := minmod (d i , d i +1 ) (8) 

where d i = f i +1 + f i −1 − 2 f i . 

2.2.2. Review of the MP scheme 

First, obtain the primary numerical flux ̂ f o 
i +1 / 2 

using a high- 

order scheme. In the original paper of the MP scheme [5] , the fol- 

lowing fifth-order upwind scheme (U5) 

̂ f o i +1 / 2 = 

2 f i −2 − 13 f i −1 + 47 f i + 27 f i +1 − 3 f i +2 

60 

(9) 

is used. Then, the primary numerical flux ̂ f o 
i +1 / 2 

is maintained or 

replaced according to the following limiting procedures. 

First, in order to achieve the monotonicity-preserving property: 

(I) ̂ f o 
i +1 / 2 

should lie between f i and f i +1 . (II) u n +1 
i 

should lie be- 

tween u i −1 and u i , which merely ensures that ̂ f o 
i +1 / 2 

lies between 

f i and f UL , where 

f UL = f i + κ( f i − f i −1 ) , (10) 

and κ ≥ 2 [5] . Combining the two assumptions, a first-order 

monotonicity-preserving interval I [ f i , f MP ], which is just the inter- 

section of I[ f i , f i +1 ] and I [ f i , f 
UL ], is derived, where 

f MP = f i + minmod ( f i +1 − f i , κ( f i − f i −1 )) . (11) 

However, to bring ̂ f o 
i +1 / 2 

into the interval I [ f i , f 
MP ] will result in 

degeneration to first order near an extremum. In order to avoid 

this drawback, Suresh and Huynh [5] proposed the idea of enlarg- 

ing the intervals defined above to avoid the loss of accuracy. Based 

on the parabolic interpolation, I[ f i , f i +1 ] and I [ f i , f 
UL ] were enlarged 

to I[ f i , f i +1 , f 
MD ] and I [ f i , f 

UL , f LC ], respectively, where 

f MD = 

1 

2 

( f i + f i +1 ) −
1 

2 

d MM 

i +1 / 2 , (12) 

f LC = f i + 

1 

2 

( f i − f i −1 ) + 

4 

3 

d MM 

i −1 / 2 , (13) 

or [6] 

f LC = 

1 

2 

( f i + f UL ) + 

κ

2 

d MM 

i −1 / 2 . 13 

′ 

Moreover, it has been proven that I[ f i , f i +1 , f 
MD ] and I [ f i , f UL , f LC ] 

will enlarge only for non-monotonic numerical data, and will au- 

tomatically degenerate to I[ f i , f i +1 ] and I [ f i , f 
UL ] for monotonic nu- 

merical data [5,6] . However, in practice it is recommended to re- 

place d MM 

i +1 / 2 
with a more restrictive but heuristic measure of the 

local curvature d M4 
i +1 / 2 

[5] 

d M4 
i +1 / 2 = minmod (d i , d i +1 , 4 d i − d i +1 , 4 d i +1 − d i ) . (14) 
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