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a b s t r a c t 

In this paper, we propose an efficient adaptive scheme based on the WENO (weighted essentially non- 

oscillatory) process for the hyperbolic conservation laws. This scheme achieves fifth order accuracy as 

the fifth order WENO scheme does. Also, due to its adaptive mechanism, the scheme deals with prob- 

lems which contain both discontinuities and complex smooth regions much better than traditional high 

order schemes. In addition, the proposed scheme saves computational costs by avoiding solving redun- 

dant nonlinear weights in certain places. Systematic analyses and numerical tests show that our adaptive 

scheme is of a high level of robustness and resolution. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

Nowadays, the hyperbolic conservation laws in the form: 

u t + ∇ · f (u ) = 0 (1) 

arise in many practical applications such as magneto hydrody- 

namics (MHD), shallow water problems, haptotaxis models, traffic 

models, and computational aero-acoustics(CAA), etc. There are no 

analytical solutions to these complicated problems. Therefore, the 

demand for the high-resolution methods has grown rapidly in the 

last decades. Among these high resolution methods, the high order 

schemes are more welcome because they can provide the same re- 

sult with less grid points for the steady problems and cause less 

damping for the unsteady ones. 

For high order schemes, the most straightforward approach to 

increase the order of accuracy is to extend the computational sten- 

cil for the finite volume/difference methods [1,2] . Although this ap- 

proach is efficient and easy to work, it is inclined to obtain spuri- 

ous oscillations when it is applied to problems with strong discon- 

tinuities. Also, it is a shortcoming that the solver attempts to build 

a high order reconstruction using data from regions of the flow 

that may not be physically relevant [1] . 

To avoid the unphysical relevance and make the computational 

stencil compact, some other methods, such as the Discontinuous 

Galerkin (DG) method [3] , the Spectral Difference (SD) method 

[4] , and the Spectral Volume (SV) method [5] , have been stud- 
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ied widely. But all these methods suffer two primary drawbacks: 

a high storage requirement and a lack of robustness. 

On the other hand, the TVD concept [6] was proposed to be free 

from such spurious oscillations. However, it falls to the first order 

accuracy at extrema. The ENO(essentially non-oscillatory) scheme 

and the TVB concept [7] were introduced to overcome this de- 

fect. Also, the WENO-class schemes were proposed by using a con- 

vex combination of all candidate stencils instead of choosing the 

smoothest one to improve the levels of accuracy and robustness 

near discontinuities. 

The classical WENO scheme, introduced by Jiang and Shu [8] , 

can obtain ( 2 r − 1 ) th order accuracy. Henrick et al. [9] developed 

a mapping function to refine the accuracy and the convergence or- 

der at critical points. Borges et al. [10] devised a different weight- 

ing formulation to satisfy the same condition as Henric‘s. However, 

because the TVB concept allows oscillations when the spurious os- 

cillations do not grow unboundedly, all these WENO-class schemes 

are inevitable to encounter undershoot or overshoot phenomenon 

which influence the robustness and the accuracy intensely. Fur- 

thermore, all the WENO-class schemes are based on the local char- 

acteristic decomposition, which often causes excessive numerical 

dissipation. Moreover, the calculation costs for this procedure and 

the nonlinear weights are very high. To reduce the excessive nu- 

merical dissipation and the large computational cost, researchers 

have developed a class of hybrid schemes by using the WENO 

scheme to capture the discontinuities and adopting the other high 

order schemes in smooth regions [11–17] . For example, Matthew R. 

Norman [18] developed a WENO-limited method within the finite 

volume (FV) framework for parallel strategy. In addition, Robert 

Nichols [19] and his coworkers interpolated the primitive variables 
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to the grid half nodes by adopting the WENO reconstruction, which 

is more efficient by avoiding the expensive projections onto the 

characteristic states. However, most aforementioned schemes’ per- 

formances depend on the artificial parameters strongly. Inappro- 

priate parameters’ definitions may overlook the oscillation phe- 

nomenon and lower the level of robustness. To properly deal with 

these issues, we propose an efficient adaptive scheme in this paper. 

To be with a high level of robustness and efficiency, this scheme 

identifies where the discontinuity is and where the spurious os- 

cillation phenomenon appears automatically. Also, it avoids adopt- 

ing the expensive characteristic transformation and the problem- 

dependent parameters. 

The present paper is organized as follows: After a brief review 

of WENO class methods for one-dimensional scalar conservation 

laws in Section 2 , the high order TVD reconstructions is presented 

concisely in Section 3 . In Section 4 , the time evolution method is 

briefly shown. The effective adaptive high-order scheme is derived 

in section 5 where a detailed adaptation algorithm and a conver- 

gence study are introduced. In Section 6 , some numerical results 

are presented to verify the characteristics of the new scheme. And 

the conclusions are drawn in Section 7 . 

2. Weighted essentially non-oscillatory schemes 

In this section, we briefly describe the fifth-order WENO 

scheme for one dimensional scalar conservation laws. The one di- 

mensional hyperbolic conservation law (1), with a uniform grid 

size �x , has the semi-discretization form 

d u i (t) 

dt 
= − 1 
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where ̂ f 
i + 1 

2 
describes the numerical flux of u between the cells i 

and i + 1 . 

For a general flux, we can split it into two parts either globally 

or locally: 

̂ f ( u 

+ , u 

−) = f ( u 

+ ) + f ( u 

−) , (3) 

where df ( u + ) 
du 

≥ 0 and 

df ( u −) 
du 

≤ 0 . As can be seen in the Ref [1] , the 

difference between different monotone fluxes for the high order 

reconstruction methods makes little difference. Thus, we choose 

the commonly used global Lax–Friedrich flux splitting method in 

this paper 
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1 
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where α = max | f ′ (u ) | and the maximum is taken over the whole 

relevant range of u. Here we only describe how u + is computed 

and drop the ′′ + 

′′ sign in the superscript for simplicity. 

To satisfy the conservative property of the spatial discretization, 

we implicitly define a cell averaged function h ( x ) as 
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The fifth-order polynomial approximation is built through the 

convex combination of interpolated values ̂ u k ( x i ±1 / 2 )(k = 0 , 1 , 2) , 

in which the third order interpolation polynomial on each stencil 

is S 3 
k 

= ( x i + k −2 , x i + k −1 , x i + k ) , and 
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where the nonlinear weights ω k satisfy 

2 ∑ 

k =0 

ω k = 1 . ω k ≥ 0 , k = 0 , 1 , 2 (8) 

The polynomial ̂ u k (x ) at the cell boundary x 
i + 1 

2 
in sub-stencil 

S k can be constructed as 
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where the c kj are Lagrange interpolation coefficient depending on 

the left-shift parameter k . The specific form can be written as 
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which can be shown in the following form by Taylor series expan- 

sion: 
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The nonlinear weights are defined as 

ω k = 

αk ∑ 2 
l=0 αl 

, ω k = 

d k 

( βk + ε ) 
p (12) 

where the ideal weights, d 0 = 

3 
10 , d 1 = 

6 
10 , d 2 = 

1 
10 , are the coeffi- 

cients which can generate the central upstream fifth-order scheme 

for the 5-points stencil S 5 . The parameter ɛ is defined as 10 −6 

to prevent the denominator from becoming zero in the WENO-JS 

scheme (the classical WENO proposed by Jiang and Shu) and 10 −40 

in the WENO-Z scheme. 

2.1. The WENO(JS) scheme 

The smoothness indicators βk (k = 1,2,3) proposed by Jiang and 

Shu are given by 

βk = 
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To take ( 13 ) in an explicit form, 
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it is obvious that βk satisfies βk = D ( 1 + O ( �x 2 ) ) where D is some 

non-zero quantity independent of k . As is shown by Henrick et al. 

[9] , the WENO weights ω k satisfy the condition ω k = d k + O ( �x 2 ) , 

which provide sufficient conditions 
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for the fifth convergence order in the smooth region. However, the 

convergence order is degraded at critical points where the deriva- 

tive vanishes. On the other hand, if a discontinuity occurs in one 
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