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a b s t r a c t 

An appropriate procedure to construct symmetric conservative metrics is presented for the high-order 

conservative flux-reconstruction scheme on three-dimensionally moving and deforming grids. The present 

framework enables direct discretization of the strong conservation form of governing equations with- 

out any errors in the freestream preservation and global conservation properties. We demonstrate that 

a straightforward implementation of the symmetric conservative metrics often fails to construct met- 

ric polynomials having the same order as a solution polynomial, which severely degrades the numeri- 

cal accuracy. On the other hand, the symmetric conservative metrics constructed using an appropriate 

procedure can preserve the freestream solution regardless of the order of shape functions. Moreover, a 

convecting vortex is more accurately computed on deforming grids. The global conservation property is 

also demonstrated numerically for the convecting vortex on deforming grids. 

© 2016 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license. 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 

1. Introduction 

Recently, a number of methods with high-order spatial accu- 

racy have been developed on unstructured grids, e.g., discontinu- 

ous Galerkin (DG), spectral difference (SD), spectral volume (SV), 

and flux reconstruction (FR) schemes. [8,10] These unstructured 

high-order schemes introduce multiple degrees of freedom (DoF) 

for achieving high-order accuracy in each computational cell (or 

element), and the flux at the cell boundaries is computed us- 

ing an approximate Riemann solver. Based on the unstructured 

grids, these schemes are capable of high-order discretization of 

flow fields around more complicated geometries than conventional 

finite-difference schemes on structured grids. In addition, a high- 

order shape function can be applied with multiple inner grid 

points so that the shape of each cells is represented as a high- 

order curved element, i.e., a high-order mesh [1,28] . Although a re- 

search on the high-order mesh generation is still developing [28] , 

it would show the significant potential for the smooth and fine 

representation of curved boundary with considerably coarse node 

points. Furthermore, several benchmark cases have been reported 
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in which these unstructured high-order schemes achieve almost 

the same resolution as conventional high-order finite-difference 

schemes with comparable total DoF on the structured grids [27] . 

Th is study focuses on the FR scheme [10] , which recovers stan- 

dard high-order schemes such as nodal DG, SD, and SV by differ- 

ent choices of correction functions for linear problems. Specifically, 

th is study investigates the conservative FR scheme [8] , in which 

the governing equations are expressed in the strong conservation 

form. The strong conservation form is important for correctly com- 

puting the shock jump conditions and speed [8] and is considered 

to be the basis for kinetic energy preserving schemes on the curvi- 

linear elements [7,16,20] , which are formulated as a combination 

of discretizations of conservative and nonconservative governing 

equations. 

When computing flows around complex geometries using con- 

ventional high-order finite-difference schemes, a body-fitted (gen- 

eralized) coordinate system is frequently adopted. In this construct, 

the fidelity of the represented boundary shape directly depends 

on the number of grid points. In contrast, in the FR scheme, the 

boundary shape of each cell is analytically defined by a high-order 

shape function, i.e., high-order curved mesh. Despite the strong 

conservation form of the governing equation, the use of a three- 

dimensional body-fitted coordinate system and high-order shape 

functions often fails to compatibly satisfy both the freestream 
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preservation [13] and global conservation properties [2,3] . The 

failure in the freestream preservation property arises from vi- 

olation of the Leibnitz rule and the commutative property of 

multiple differencing operations when a coordinate-transformation 

matrix (i.e., metrics) is inappropriately discretized. The conditions 

for freestream preservation are expressed by metric identities, 

which are collectively referred to as the geometric conservation 

law (GCL). The GCL identities comprise the surface closure law 

(SCL) and the volume conservation law (VCL) [23] . Although the 

freestream preservation property on a moving and deforming grid 

is ensured by satisfying both the SCL and VCL identities, only the 

VCL identity is considered herein. This is because we demonstrated 

an appropriate procedure for constructing spatial metrics satisfying 

the SCL identities on a stationary grid in a previous study [1] . 

In the FR/CPR framework, Liang et al. [14] demonstrated a 

method for preserving the freestream by directly discretizing a 

nonconservative governing equation. Although the global conser- 

vation property is satisfied if the discretization of the nonconser- 

vative form is exactly equivalent to that of the strong conserva- 

tion form using exact discretizations for time and spatial deriva- 

tives, the conservation property was not numerically verified in 

their study [14] . In practice, typical discretizations of time and 

spatial derivatives using a polynomial approximation often intro- 

duce truncation and aliasing errors, which leads to the numeri- 

cal violation of the commutative property of the strong conserva- 

tion form and the nonconservative form. On the other hand, Gao 

and Wang introduced a chain-rule (CR) method with a correction 

for the global conservation property on stationary grids [6] . Since 

this method adopts nonconservative governing equations, the fail- 

ure in the freestream preservation property does not arise. More- 

over, a computational error in the global conservation property is 

corrected for by adding a correction source term in each cell. The 

compatibility of the freestream preservation and global conserva- 

tion properties might be able to be extended to moving and de- 

forming grids. However, its implementation is not trivial, and ver- 

ification is required. In addition, since the correction source term 

is uniformly imposed in each cell as an averaged value, a numeri- 

cal solution would be different from that obtained by a direct dis- 

cretization of the strong conservation form. Such a difference will 

be small if the flow field is smooth. However, the properties of 

the correction procedure have not been adequately investigated for 

complex flows that include discontinuities such as shock waves. 

In th is paper, we introduce a method for directly discretiz- 

ing the strong conservation form without any errors in either the 

freestream preservation or global conservation properties on mov- 

ing and deforming grids in the FR framework. In order to achieve 

the freestream preservation property, we apply a versatile tech- 

nique developed in a high-order finite-difference framework [2–

5,17,18,23,25,26] , in which the coordinate transformation metrics 

are analytically re-expressed in conservative form (hereinafter re- 

ferred to as conservative metrics ). Although the use of the conser- 

vative metric is similarly expected to ensure the freestream preser- 

vation property in the FR scheme, its implementation is not as 

straightforward as in the previous study for spatial metrics on 

stationary grids, i.e., satisfying the SCL identities [1] . Notice that 

the present framework would also be effective for satisfying the 

GCL identities directly in an arbitrary Lagrangian –Eulerian (ALE) 

method [9] . The ALE method in a DG formulation has been de- 

veloped by many researchers [15,19,24] , where the GCL identities 

are frequently satified by another technique, e.g., solving an addi- 

tional scalar equation to compensate for the discretized GCL errors 

[19] , which would be simply replaced by the use of the present 

conservative-metric technique even for the high-order shape func- 

tion. 

In the present paper, the following items are newly discussed 

for the FR scheme: 

1. For moving and deforming grids with the high-order shape 

function, compatible conditions for satisfying both the 

freestream preservation (i.e., the GCL identities) and global 

conservation properties are presented ( Section 3 ). 

2. It is shown that using a conventional formulation of coordi- 

nate transformation metrics, freestream cannot be preserved 

regardless of the order of solution polynomials on moving 

and deforming grids in the FR framework. Then, an appro- 

priate construction method is proposed for the conservative 

metrics, which satisfies the freestream preservation property 

without neglecting the global conservation property on mov- 

ing and deforming grids using an arbitrary-order shape function 

( Section 4 ). 

3. The resolution and accuracy of a numerical solution are ver- 

ified for the proposed conservative metric formulations on a 

moving and deforming grid. The computational accuracy of the 

scheme with an appropriate conservative-metric formulation is 

compared with that with a straightforward formulation of met- 

rics ( Section 5 ). 

2. Conservative flux-reconstruction scheme 

2.1. Coordinate systems 

Since moving and deforming grids are considered herein, the 

following assumptions are introduced for a coordinate transforma- 

tion between the Cartesian and body-fitted coordinate systems: 

ξ = ξ (x, y, z, t) , η = η(x, y, z, t) , ζ = ζ (x, y, z, t) , (1) 

x = x (ξ , η, ζ , τ ) , y = y (ξ , η, ζ , τ ) , z = z(ξ , η, ζ , τ ) , (2) 

t = τ, (3) 

where t and τ are the physical and computational time, respec- 

tively. The computational domain is spatially subdivided into hex- 

ahedral cells at each time step. Each cell in the Cartesian coordi- 

nate system { x , y , z , t } of physical space is mapped onto a standard 

cube cell E s := { ξ , η, ζ , τ | − 1 ≤ ξ , η, ζ ≤ 1 , τl min 
≤ τ ≤ τl max 

} in the 

body-fitted coordinate system { ξ , η, ζ , τ } of computational space. 

Here, τl min 
and τl max 

indicate lower and upper bounds of the time 

steps, respectively, which are used for time integration to update a 

solution at τ = τl . 

The shape of the n th cell, i.e., r n (ξ , η, ζ , τ ) := x e x + y e y + ze z , is 

approximated by a tensor product of N th- and T th-order polyno- 

mials in the spatial and temporal directions, respectively. There- 

fore, grid points in the n th cell are defined for (N + 1) 3 in the 

spatial direction and (T + 1) in the temporal direction. Hereinafter, 

the grid point is referred to as GP , which is used to indicate both 

the node and inner grid points. Fig. 1 shows GPs as blue points 

when N = 1 and T = 1 are assumed. When N ≥ 2, a GP should be 

defined not only at the cell vertex but also at the cell boundary 

and interior of the cell. In th is study, we assume that all GPs are 

provided by the computational grid file and the augmented high- 

order GP is defined analytically (see Eqs. (63) –(65) in Section 5 ). 

On the other hand, the degree of the temporal polynomial is equiv- 

alent to the order of a time integration method for the solution. 

The reason for this is that the FR scheme generally adopts a con- 

ventional time-integration method, e.g., the two-stage Runge –Kutta 

(RK) method. In this case, the solution points (hereinafter referred 

to as SP : green points in Fig. 1 ) and GPs are collocated in the time 

direction. Note that SP and GP can be independently defined such 

that polynomials of different degree are adopted for time evolution 

of the grid and solution, e.g., space-time formulation [11] , which, 

for the purpose of a concise implementation, will not be discussed 

herein. 
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