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a b s t r a c t 

The positivity-preserving well-balanced discontinuous Galerkin (DG) method (Xing et al. J Sci Comput 57 , 

2013) is employed to solve the shallow water equations on an unstructured triangular mesh and to study 

their applications in computational hydrology. The grid convergence of the DG method is verified via the 

steady state oblique hydraulic jump problem. The dam-breaking problems with wet and dry river beds 

are conducted to demonstrate the positivity-preserving property of the scheme. The tidal bores in an 

idealized estuary problem are simulated to study the development and evolution of the tidal bores from 

different am plitudes of incoming tidal waves and topography of the river bed bottom. The numerical ex- 

periments above demonstrate that the DG method can be applied successfully to these class of problems 

in computational hydrology. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

In the field of hydrology, there is a class of special flows in 

which the water level and velocity change rapidly and abruptly. 

In these flows, strong gradients or discontinuities often appear 

in the flows, for example, a sharp water level drop due to the 

discontinuities in the initial condition resulting from a breaking of 

a dam, and a development of sharp tidal bores due to the strong 

nonlinearity interaction between an outgoing river water and an 

incoming ocean tidal waves at the estuary. The tidal bores are a 

tidal phenomenon along a coast where a river empties into a sea 

in which the leading edge of the incoming high tide forms a wave 

(or waves) of water that travels up the river against the direction 

of the river current (also known as positive surge). However, there 

are only a few places, under some specific geological conditions, 

where the tidal bores can occur—not all coast features tidal bores. 

The river must be fairly shallow and has a narrow outlet to the 

sea. The estuary, the area where the river meets the sea, must 

be wide and flat. The coast’s tidal wave length, the distance 

between high and low tides must be quite large (typically at least 

6 m ). When all of these conditions are satisfied, a tidal bore is 
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formed. A few notable tidal bore systems in the world are the 

Pororoca Tidal Bore with Amazon river, Brazil, Bono Tidal Bore 

with Kampar River, Indonesia, Severn Tidal Bore with Severn River, 

United Kingdom, Silver Dragon Tidal Bore with Qiantang River, 

China and Turnagain Arm Tidal Bore with Cook Inlet, Alaska. An 

exception of the conditions above is the Amazon River where 

the mouth of the river is not narrow but shallow and dotted by 

many low-lying islands and sand bars. We refer the reader to 

the national geographic website 1 for more descriptions about the 

development and evolution of the tidal bores in the nature. 

The research of the tidal bores has two basic goals. Academical- 

wise, the study of strong intermittent flow such as the tidal bores 

has been an important and challenging subject in hydrology. 

Research on the numerical simulations of tidal bores, not only 

can reveal the water dynamics of nonlinear wave laws, but also 

has an academic significance and a theoretical value in hydro- 

dynamics and computational fluid dynamics. Engineering-wise, 

the study of the formation and evolution of the tidal bores, the 

in-depth understanding of its effect on estuarine environment 

and the effect of human activities on the tidal bores, can enhance 

the human survival and the economic and social development 

related to water environmental problems, preventing the potential 

harmful effects from the tidal bores while keeping this unique and 

valuable natural resource. 

1 http://education.nationalgeographic.com/encyclopedia/tidal-bore/ 
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The shallow water equations serve as a very important model 

in the simulations of flows in the rivers, lakes and coastal areas, in- 

cluding the tidal bores. Although the shallow water equations have 

been studied extensively in the past two decades, they remain an 

active area of research in both theoretical studies and numerical 

simulations due to their practical importance. The traditional 

numerical methods for solving the shallow water equations are 

the method of characteristics (MOC), finite element method (FEM) 

and finite different Method (FDM). These methods have been suc- 

cessful in the simulations of many continuous flows, but are not 

satisfactory in solving discontinuous flows like the tidal bores. On 

one hand, one difficulty encountered in the simulation of shallow 

water equations is how to exactly balance the flux gradients by 

the source terms in the steady-state solution. The well-balanced 

schemes [1–6] are specially designed to preserve exactly the 

steady-state solution up to the machine error with relatively 

coarse meshes. Moreover, dry areas (where the water height is 

exactly equal to zero) might appear in the natural environments 

such as the dam-breaking problem over a dry river bed. Due to 

the Gibbs phenomenon when using a high order scheme without 

employing some forms of limiting on the solution and/or flux 

(limiter), a non-physical negative water height will be generated 

numerically in the simulations. It causes problem in calculating the 

eigenvalues that involve a square root of the water height. There- 

fore, many positivity-preserving schemes [7–11] were designed to 

preserve the positivity of certain physical quantities, such as the 

mass fraction in a reactive Euler equations and the water height 

in the shallow water equations with a dry area. A few of existing 

numerical methods [12–18] are able to maintain both the well- 

balance and positivity of the numerical schemes simultaneously. 

Discontinuous Galerkin (DG) method is a class of finite element 

methods using discontinuous piecewise polynomial space as the 

solution and test function spaces (see [19] for a historic review 

and basic idea). It has been used extensively in solving the shallow 

water equations [20–26] . Recently, the positivity-preserving well- 

balanced DG method for the shallow water equations [16] was 

proposed to maintain the still water steady state solution exactly, 

and to preserve the non-negativity of the water height without a 

loss of mass conservation. In [17] , a simple positivity-preserving 

limiter was extended to the DG method on the unstructured 

triangular meshes to guarantee the positivity of the water height. 

In this study, we investigate the application of the positivity- 

preserving well-balanced DG method designed in [17] to the 

computational hydrology on the unstructured grids. We employ 

this method for simulating several challenging practical engineer- 

ing problems such as the dam-breaking problems with wet and 

dry river beds and the development and evolution of the tidal 

bores in an idealized estuary. The grid convergence of the DG 

method is verified in the case of steady state oblique hydraulic 

jump. The positivity-preserving limiter is used in the DG method 

to avoid the non-physical negative water height in the simulations 

of dam-breaking problems with a dry river bed. The evolution of 

the flooding of the wet and dry river beds shows different flow 

structures that are unique in each individual case. A tidal bore 

is simulated to study the formation and evolution of the tidal 

bores with a trumpet-like shape river mouth emptying into an 

ocean while subjected to a large incoming tidal wave, similar to 

the one at the Qiantang River, China. We study factors like the 

tidal amplitude and river topography, which are related to the 

propagation and breaking of the undular tidal bores while moving 

up to the river against the current. 

The paper is organized as follows. In Section 2 , a very brief 

introduction to the positivity-preserving well-balanced DG method 

for the shallow water equations will be given. In Section 3 , a 

classical two-dimensional steady state example is presented to 

validate the accuracy and convergence of the DG method. The 

positivity-preserving well-balanced DG method is then applied to 

the dam-breaking problems with both wet and dry river beds. 

Also, an idealized estuary problem that simulates the formation 

and evolution of the tidal bores in a long straight river is shown. 

Finally, conclusion and future work are given in Section 4 . 

2. Positivity-preserving well-balanced DG method 

The two-dimensional shallow water equations take the form ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 

h t + (hu ) x + (h v ) y = 0 

(hu ) t + 

(
hu 

2 + 

1 

2 

gh 

2 
)

x 
+ ( hu v ) y = −ghb x 

(h v ) t + ( hu v ) x + 

(
h v 2 + 

1 

2 

gh 

2 
)

y 
= −ghb y , 

(1) 

where h is the water height, ( u, v ) T is the velocity vector, b ( x, y ) 

is the bottom topography and g is the gravitational constant. In a 

compact form, (1) can be written as 

Q t + ∇ · F (Q ) = S (h, b) , 

where Q = (h, hu, h v ) T with the superscript T denoting the trans- 

pose, F (Q ) = ( f (Q ) , g(Q )) is the flux vector and S ( h, b ) is the 

source term. 

Let T τ be a family of triangular partitions of the computational 

domain � parameterized by τ > 0. For any triangle K ∈ T τ , we de- 

fine τ K := diam( K ) and τ := max 
K∈T τ

τK . For each edge e i 
K 

(i = 1 , 2 , 3) 

of K , we denote its length by l i 
K 
, and outward unit normal vector 

by n 

i 
K 

. Let K ( i ) be the neighboring triangle along the edge e i 
K 

and 

| K | be the area of the triangle K . In a high order DG method, 

we seek an approximation, still denoted by Q with an abuse of 

notation, which belongs to the finite dimensional space: 

V τ = { w ∈ L 2 (�) ; w | K ∈ P k (K) ∀ K ∈ T τ } , (2) 

where P k ( K ) denotes the space of polynomials of degree at most k 

on K . 

Let x denotes ( x, y ), the standard DG scheme is given by ∫ ∫ 
K 

Q t w d x −
∫ ∫ 

K 

F (Q ) · ∇w d x + 

3 ∑ 

i =1 

∫ 
e i 

K ̂

 F | e i 
K 

· n 

i 
K w d s = 

∫ ∫ 
K 

S w d x , (3) 

where w ( x ) is a test function, and the numerical flux ̂  F is defined 

by ̂ F | e i 
K 

· n 

i 
K = F(Q 

int(K) 
i 

, Q 

ext(K) 
i 

, n 

i 
K ) , (4) 

where Q 

int(K) 
i 

and Q 

ext(K) 
i 

are the approximations to the values on 

the edge e i K obtained from the interior and the exterior of K . We 

could, for example, use the simple global Lax–Friedrichs flux 

F(a 1 , a 2 , n ) = 

1 

2 
[ F (a 1 ) · n + F (a 2 ) · n − α(a 2 − a 1 ) ] , 

where α = max 

(
(| u | + 

√ 

gh , | v | + 

√ 

gh ) · n 

)
and the maximum is 

taken over the whole region. Notice that h ≥ 0 should be a non- 

negative value at all time. 

In order to achieve the well-balanced property, we are inter- 

ested in preserving the still water stationary solution, namely, 

h + b = const, u = v = 0 , (5) 

exactly. Well-balanced numerical methods are designed in [16,17] , 

and take the form ∫ ∫ 
K 

Q t w d x −
∫ ∫ 

K 

F (Q ) · ∇w d x + 

3 ∑ 

i =1 

∫ 
e i 

K ̂

 F ∗| e i 
K 

· n 

i 
K w d s = 

∫ ∫ 
K 

S w d x , 

(6) 

where the well-balanced numerical fluxes ̂  F ∗ are given by 

̂ F ∗| e i 
K 

· n 

i 
K = F(Q 

∗,int(K) 
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, Q 
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∗
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i 
K , (7) 
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