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a b s t r a c t 

A method for post-processing the velocity after a pressure projection is developed that helps to main- 

tain stability in an under-resolved, inviscid, discontinuous element-based simulation for use in environ- 

mental fluid mechanics process studies. The post-processing method is needed because of spurious di- 

vergence growth at element interfaces due to the discontinuous nature of the discretization used. This 

spurious divergence eventually leads to a numerical instability. Previous work has shown that a discon- 

tinuous element-local projection onto the space of divergence-free basis functions is capable of stabi- 

lizing the projection method, but the discontinuity inherent in this technique may lead to instability in 

under-resolved simulations. By enforcing inter-element discontinuity and requiring a divergence-free re- 

sult in the weak sense only, a new post-processing technique is developed that simultaneously improves 

smoothness and reduces divergence in the pressure-projected velocity field at the same time. When com- 

pared against a non-post-processed velocity field, the post-processed velocity field remains stable far 

longer and exhibits better smoothness and conservation properties. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

Pressure-projection methods are a class of numerical tech- 

niques that decouple the solution of pressure from velocity in the 

numerical simulation of an incompressible flow. These methods, 

first developed by Chorin [3] , overcome the difficult problem of 

the pressure-velocity coupling through the incompressibility con- 

straint, and are widely used in computational fluid dynamics for 

simulating time-dependent flow [11,12] . The fundamental idea in 

the pressure-projection method is that the momentum equation 

and the incompressibility constraint are time-integrated separately 

and in sequence. First, the momentum equations are solved to ad- 

vance the velocity to an interstitial time. Next, a projection opera- 

tion maps these velocities onto the space of divergence-free func- 

tions by way of solving a Poisson equation and advances the veloc- 

ity to the next time. Thus, projection methods are also sometimes 

known as fractional-step or time-splitting methods [16,17,20] and 
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are widely-used solving viscous, time-dependent, incompressible 

flows. Because of their ubiquity, much work has been to done to 

construct consistent boundary conditions for the pressure and ve- 

locity [2,16,17,19,24,26] and stable spatial discretizations of each 

constituent operator in the time-splitting [5] . These effort s are 

largely focused on avoiding the spurious divergence boundary lay- 

ers that can form when inconsistent boundary conditions are used 

in the time-splitting within the projection method [16,26] . A con- 

cise review of pressure projection methods can be found in Ref. 

[11] . 

While in theory the velocity, once projected, is supposed to be 

divergence-free, it has recently been observed that in the discon- 

tinuous Galerkin (DG) formulation the projection operation may 

contain non-solenoidal eigenmodes [25] . Thus, the projected ve- 

locity fields themselves are not exactly divergence-free, which can 

lead to numerical instability and inaccuracy . A possible explana- 

tion for the cause (which is discussed in Section 2.2 ) of this is that 

this is due to the discontinuous spatial discretization of the Lapla- 

cian operator within the pressure projection method. To remedy 

this, Steinmoeller et al. [25] construct a post-processing method 
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that explicitly projects the velocity field onto a computed basis set 

that is exactly the null-space basis of the discrete DG divergence 

operator, and show that this projection eliminates the spurious di- 

vergence due to the non-solenoidal eigenmodes of the pressure 

projection update operator. While this post-processing technique is 

effective in eliminating non-solenoidal components of the velocity, 

by virtue of the discontinuous nature of the spatial discretization, 

the exact null-space projection (ENP) as in Steinmoeller et al. does 

not take into account continuity between elements. ENP is a pro- 

jection that is entirely local to an element. 

In this work, we ask whether this locality is ever problematic, 

and if so what should be done to address it. While this ques- 

tion is broad in scope, it is shown that at least in one instance 

of a marginally resolved simulation the discontinuity in the ENP 

can lead to instability. As a remedy, a modified null-space projec- 

tion technique is used as a post-processing method that explicitly 

takes into account inter-element continuity in a regularized least- 

squares sense. It is shown that in this instance the so-called weak 

null-space projection method appears to yield greater stability as 

a post-processing technique. In this regard, this line of reason- 

ing is in parallel to previous effort s which focused on construct- 

ing boundary conditions to avoid the spurious divergence bound- 

ary layers [16,26] , but focusing instead on the spurious divergence 

that is observed to form at inter-element boundaries. 

To study the relative merits of the exact null-space projection 

and its modification that captures inter-element continuity, the 2D 

incompressible Euler equations are used as a proxy for the full 

incompressible Navier–Stokes equations. The incompressible Euler 

equations model an inviscid incompressible flow with a stratified 

background density profile that is not dependent on time and only 

depends on the vertical direction; a perturbation density, ρ ′ (x , t ) , 

is overlaid on the background stratification and as noted does vary 

in time and space. The equations are given as 

∂u 

∂t 
= u · ∇u − 1 

ρ0 

∇p − g 

ρ ′ 
ρ0 

e z (1) 

∇ · u = 0 (2) 

∂ρ ′ 
∂t 

= −∇ · u (ρ ′ + ρ) (3) 

where ρ(x, z, t) = ρ0 + ρ(z) + ρ′ (x, z, t) is density stratified in the 

Boussinesq approximation [18] with ρ(z) the background stratifi- 

cation, u (x , z , t ) the velocity, p the pressure, and e z the unit vec- 

tor in the vertical direction. It is assumed that ρ0 � ρ � ρ′ . In the 

pressure-projection method Eqs. (1) and (2) are not solved directly. 

Instead, a projection operator P is used to solve 

∂u 

∂t 
= P 

(
u · ∇u − g 

ρ ′ 
ρ0 

e z 

)
(4) 

in which the projection operator P is defined as 

P u := u − ∇�−1 (∇ · u ) . (5) 

This decouples the solution of pressure from velocity, and al- 

lows for a sequential solution algorithm in which the velocity is 

advected by the nonlinear term prior to being projected into a 

divergence-free space by P . 

While viscosity is neglected here, the difficulties encountered 

in stabilizing the pressure projection method for the Navier–Stokes 

equations are all encountered here as well. The presence of vis- 

cosity will only aid in damping the numerical instabilities driven 

by the nonlinear advection term, so stability in the inviscid case 

is more difficult to achieve due to the absence of physical viscous 

dissipation. In fact, the discussion of stability and under-resolution 

is primarily manifest in advection-dominated Navier–Stokes sim- 

ulations in which a broad range of scales is present due to the 

lack of strong viscosity; in this sense then, the incompressible Eu- 

ler simulations presented here capture the essence of the difficulty 

in simulating incompressible fully-viscous flows. 

The numerical method used to model the density-stratified in- 

viscid incompressible Euler equations is the spectral multi-domain 

penalty method (SMPM), a high-order discontinuous collocation- 

based variant of the spectral element method [10,13] which has 

been previously shown to be effective in simulating high-Reynolds 

number environmental flows [7,8] using the pressure-projection 

method. In particular, we will use as an example the inviscid prop- 

agation of an internal solitary wave in a density-stratified chan- 

nel as a test bed for evaluating the efficacy of the various post- 

processing methods. In these simulations, the initial conditions 

propagate as waves in a non-dispersive non-dissipative fashion 

through the domain while retaining their form. Thus, the degree 

to which these solutions maintain their structure is a good heuris- 

tic for the efficacy of these post-processing methods. It should 

be mentioned that although the SMPM is chosen to demonstrate 

these methods, these ideas are readily extensible to discontinuous 

Galerkin (DG) discretizations, and especially to high-order DG dis- 

cretizations. 

The paper is organized as follows. In Section 2 the exact 

and weak null-space projection methods, their motivation and 

the notation used are described. In Section 3 two simulations 

with each of the three methods are conducted and compared. 

Both simulations are of the same propagating internal solitary 

wave in tank, and the simulations differ in their mesh resolu- 

tion. In Section 4 contains a discussion of the results presented in 

Section 3 , along with a computational assessment of the spectrum 

and numerical conditioning properties of all of the methods com- 

pared in this paper. Finally, we conclude with a short discussion of 

applicability to other numerical methods as well as a discussion of 

future work related to the ideas outlined herein. 

2. Methods 

This section summarizes the exact null-space projection (ENP) 

as outlined in Ref. [25] , the weak null-space projection which is 

the contribution of this work, and the numerical method. 

2.1. Numerical method and notation 

In the 2D SMPM, each element is assumed to be smoothly 

and invertibly mapped from the unit square [ −1 , 1] × [ −1 , 1] and 

the element connectivity is logically cartesian (each element has 

a single neighbor in each of the North, South, East, and West 

directions). Within each element lies a two-dimensional Gauss–

Lobatto–Legendre (GLL) grid; denote as n the number of GLL points 

per direction per element, and m x and m z the number of x and 

z elements in the grid 

1 . Thus, the total number of grid points is 

r = n 2 m x m z . On the GLL grid, a two-dimensional nodal Lagrange 

interpolant basis of polynomial order n + 1 is constructed such that 

each basis function has unit value on one of the n 2 GLL points 

and zero on all of the others. This nodal basis is used for approxi- 

mating functions and their derivatives which are calculated by way 

of spectral differentiation matrices [4] which compute derivatives 

of nodally-represented functions by multiplying the nodal values 

by derivatives of the Lagrange interpolants themselves. The SMPM 

is a discontinuous method and so C 0 / C 1 inter-element continuity 

and boundary conditions are only weakly enforced, which yields 

1 Here z is the vertical direction as is convention in environmental fluid mechan- 

ics. 
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