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a b s t r a c t 

In this work we investigate the use of adaptive linearly implicit Rosenbrock-type Runge–Kutta and Explicit 

Singly Diagonally Implicit Runge–Kutta schemes to integrate in time high-order Discontinuous Galerkin 

space discretizations of the incompressible Navier–Stokes (INS) and Reynolds Averaged Navier–Stokes 

(URANS) equations. The objective of this activity is to assess the efficiency and accuracy of the con- 

sidered schemes coupled with a time-step adaptation technique for incompressible URANS simulations. 

The schemes have been first investigated for the computation of the laminar travelling waves and of the 

turbulent flow around a circular cylinder at a Reynolds number Re = 5 × 10 4 , verifying the convergence 

order, a simple relation to set the system tolerance starting from the tolerance of the adaptation strategy, 

and their computational efficiency. Finally, the best scheme resulting from our analysis has been applied 

to the URANS simulation of the flow through a vertical axis wind turbine, comparing the results with 

CFD and experimental data available in literature. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

Discontinuous Galerkin (DG) methods, due to the ever in- 

creasing available computational power and the need for better 

accuracy, emerged as one of the most promising approaches to 

high-fidelity fluid dynamic computations in many technical areas, 

such as aeronautics, aeroacoustics and turbomachinery [1–7] . 

These computations require robust and accurate long time in- 

tegration of unsteady flows, characterized by a wide range of tem- 

poral scales. In this context some features of the DG methods, e.g. 

compactness and flexibility, can be advantageous both for explicit 

and implicit time integration approaches. Explicit schemes, even if 

simple to implement and of high accuracy, can be limited by time- 

step restrictions, while the implicit schemes, even if memory con- 

suming due to the need of the Jacobian matrix, can represent a 

viable solution. 

Large scale unsteady computations can be efficiently performed 

by means of projection methods [8] , see e.g. [9,10] for formu- 

lations employing spatial discontinuous Galerkin discretizations. 

Nevertheless, since in the context of decoupled time integration 

strategies the achievement of high-order accurate time integration 
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is more tricky (for instance the boundary condition treatment 

is not trivial and might harm pressure accuracy), we adopt a 

monolithic velocity–pressure space couple [11] . This choice allows 

to exploit all the implicit time integration schemes available in 

literature but requires to solve the momentum equation coupled 

with the incompressibility constraint. Clearly, without an effective 

preconditioning strategy, this approach cannot guarantee the 

computational efficiency of the projection methods. 

The most popular implicit scheme is the Backward Differen- 

tiation Formulae (BDF) [12] , which are only A -stable up to the 

second-order, and their low accuracy is not well suited for the 

increasing required level of resolution. Several high-order implicit 

time integrators, relying on multistage and multistep schemes, are 

already available and their coupling with the DG space discretiza- 

tion has been analysed: Explicit Singly Diagonally Implicit Runge–

Kutta (ESDIRK) schemes ( A -stable up to order five) [13] , Modified 

Extended BDF (MEBDF) schemes ( A -stable up to order four) [14,15] , 

and Two Implicit Advanced Step-point (TIAS) schemes ( A -stable up 

to order six) [16,17] . At each time-step, all these schemes require 

to solve several nonlinear systems of equations, a task that can be 

efficiently performed, for example, by means of the (quasi-)Newton 

method. In the large family of implicit Runge–Kutta methods, the 

class of linearly implicit Rosenbrock-type Runge–Kutta schemes, 

[13,18] , is receiving increasing attention because such methods, be- 

ing linearly implicit, require to solve only linear systems in the 
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stages within each time-step, i.e. the Jacobian matrix needs to be 

assembled and factored only once per time step. 

All these scheme have been mainly investigated for the solution 

of the compressible Navier–Stokes equations, without techniques 

to adapt the time-step. A few information can be found in lit- 

erature regarding their behaviour in the solution of Differential 

Algebraic Equations (DAE) and stiff systems arising from the 

discretization of the unsteady Reynolds Average Navier–Stokes 

(URANS). To cover this gap, this paper focus on the implemen- 

tation and assessment of Runge–Kutta schemes (ESDIRK and 

Rosenbrock) as time integrators for the high-order DG space 

discretization of the incompressible URANS equations closed by 

the k –˜ ω turbulence model [19] . The robustness and efficiency of 

the time integration schemes have been enhanced adopting a 

technique to adapt the time-step, based on a local error estimator 

which exploits the local truncation error of the time integration 

scheme and of its lower order embedded scheme. In this work we 

have carried out a comparative assessment, in terms of accuracy 

and performance, of three schemes: the fourth order/six stages 

(ESDIRK) [20] , the third order/three stages (ROS3PL) [21] and 

fourth order/six stages (RODASP) [22] linearly implicit one-step 

Rosenbrock methods. These scheme are suitable for DAE systems 

arising from the discretization of the incompressible Navier–Stokes 

(INS) equations, they have an embedded scheme for the time-step 

adaptation strategy and the ROS3PL and RODASP schemes can 

handle also time-dependent boundary conditions without or with 

slight order reduction, respectively. 

The reliability, robustness and accuracy of the proposed imple- 

mentation have been assessed by computing several incompress- 

ible unsteady test cases: (i) the laminar travelling waves on a 

doubly-periodic unit square; (ii) the turbulent flow around a cir- 

cular cylinder for a Reynolds number Re = 5 × 10 4 ; and (iii) the 

turbulent flow through a vertical axis wind turbine (VAWT). The 

travelling waves problem was used to investigate (i) the tempo- 

ral order of convergence of the schemes, (ii) a relation between 

the tolerance of the time-step adaptation technique and the toler- 

ance used to solve the system arising from the temporal discretiza- 

tion, and (iii) the computational efficiency of the schemes to ob- 

tain a given accuracy with the time-step adaptation technique. The 

circular cylinder was used to investigate the computational effi- 

ciency of the schemes with time-step adaptation technique for the 

computation of turbulent flows. Finally, the turbulent flow through 

a VAWT was computed with the best performing scheme, com- 

paring results with numerical and experimental data available in 

literature. 

The rest of the paper is organized as follows. Section 2 de- 

scribes the DG space discretization method for the Incompress- 

ible Navier–Stokes, RANS and turbulence model equations, while 

Section 3 illustrates the high-order time integration schemes im- 

plemented and the adaptive time-step algorithm. Numerical results 

are shown in Section 4 , and Section 5 contains the conclusions. 

2. DG space discretization 

Incompressible Navier–Stokes, RANS and turbulence model 

equations can be written in compact form as 

∂ ̂  q 

∂t 
+ ∇ · F c (q ) + ∇ · F v (q , ∇q ) + s (q , ∇q ) = 0 , (1) 

where q ∈ R 

m denotes the vector of the m primitive variables ( p, 

u i , k, ω) T (for i = 1 , d), s ∈ R 

m the source term, d the space dimen- 

sion. F c , F v ∈ R 

M ⊗ R 

N denote the inviscid and viscous flux func- 

tions, while ̂  q ∈ R 

m is defined as (0, u i , k, ω) T . 

To discretize the governing equations in space the system (1) 

is firstly multiplied by an arbitrary smooth test function v = 

{ v 1 , . . . , v m 

} and then integrated by parts, thus obtaining its weak 

form. The solution q and the test function v are then replaced with 

a finite element approximation q h and a discrete test function v h 

both belonging to V h 
def = [ P 

k 
d 
(T h )] m , where 

P 

k 
d (T h ) 

def = 

{
v h ∈ L 2 (�) | v h | K ∈ P 

k 
d (K) , ∀ K ∈ T h 

}
(2) 

is the discrete polynomial space in physical coordinates. P 

k 
d 
(K) de- 

notes the restriction of the polynomial functions of d variables and 

total degree ≤ k to the element K belonging to the triangulation 

T h = { K} , consisting of a set of non-overlapping arbitrarily shaped 

and possibly curved elements, built on an approximation �h of 

the domain �. We also define as F h the set of the mesh faces 

F h 
def = F 

i 
h 

∪ F 

b 
h 
, where F 

b 
h 

collects the faces located on the bound- 

ary of �h and for any F ∈ F 

i 
h 

there exist two elements K 

+ , K 

− ∈ T h 
such that F ∈ ∂ K 

+ ∩ ∂ K 

−. Moreover, for all F ∈ F 

b 
h 
, n F is the unit 

outward normal to �h , whereas, for all F ∈ F 

i 
h 
, n 

−
F 

and n 

+ 
F 

are the 

unit outward normals pointing to K 

+ and K 

−, respectively. To deal 

with discontinuous functions over the internal faces F ∈ F 

i 
h 

we in- 

troduce the jump [ [ ·] ] and average { · } trace operators, that is 

[ [ v h ] ] 
def = v h | K + n 

+ 
F + v h | K − n 

−
F , { v h } def = 

v h | K + + v h | K −
2 

. (3) 

When applied to vector functions these operators act compo- 

nentwise. 

Following the approach presented in [23] , for each equation of 

the system, and without loss of generality, we choose the set of 

test and shape functions in any element K coincident with the set 

{ φ} of N 

K 
dof 

orthogonal and hierarchical basis functions in that ele- 

ment. Such basis is built by means of the modified Gram–Schmidt 

(MGS) algorithm (Ref. [24] ) starting from a set of monomials de- 

fined over each elementary space P 

k 
d 
(K) in a reference frame re- 

located in the element barycentre and aligned with the principal 

axes of inertia of K . 

Each component q h, j , j = 1 , . . . , m, of the numerical solution q h 

∈ V h can be expressed, in terms of the elements of the global 

vector Q of unknown degrees of freedom, as q h, j = φl Q j,l , l = 

1 , . . . , N 

K 
dof 

, ∀ K ∈ T h . 
Accounting for these aspects, the DG discretization of the 

RANS and turbulence model equations consists in seeking, for j = 

1 , . . . , m, the elements of Q such that ∑ 

K∈T h 

∫ 
K 

φi φl 

dQ k,l 

dt 
dx −

∑ 

K∈T h 

∫ 
K 

∂φi 

∂x n 
F j,n ( q h , ∇ h q h + r ( [ [ q h ] ] ) ) dx 

+ 

∑ 

F ∈F h 

∫ 
F 

[ [ φi ] ] n ̂
 F j,n 
(
q 

±
h 
, ( ∇ h q h + ηF r F ( [ [ q h ] ] ) ) 

±)
dσ

+ 

∑ 

K∈T h 

∫ 
K 

φi s j ( q h , ∇ h q h + r ( [ [ q h ] ] ) ) dx = 0 , (4) 

for i = 1 , . . . , N 

K 
dof 

and where repeated indices imply summation 

over the ranges k = 1 , . . . , m, l = 1 , . . . , N 

K 
dof 

and n = 1 , . . . , d. 

In Eq. (4) F denotes the sum of the convective and viscous 

flux functions, and ̂

 F the sum of their numerical counterparts. For 

the former the flux computation is based on the exact solution 

of the Riemann problem for the artificial compressibility perturba- 

tion of the locally 1D inviscid Euler equations, as suggested in Refs. 

[19,25] , while for the latter the BR2 scheme is employed, proposed 

in Ref. [26] and theoretically analysed in Refs. [27,28] . 

3. Time discretization 

The discrete problem corresponding to Eq. (4) can be written as 

̂ M 

d Q 

dt 
+ R ( Q ) = 0 , (5) 
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