Contents lists available at ScienceDirect

Energy Conversion and Management

Energy Gonversion Management

journal homepage: www.elsevier.com/locate/enconman

A renewable energies-assisted sustainable development plan for Iran using techno-econo-socio-environmental multivariate analysis and big data

Pouya Ifaei^a, Abdolreza Karbassi^b, Seungchul Lee^a, ChangKyoo Yoo^{a,*}

a Dept. of Environmental Science and Engineering, College of Engineering, Center for Environmental Studies, Kyung Hee University, Seocheon-dong 1, Giheung-gu, Yongin-

Si, Gyeonggi-Do 446-701, Republic of Korea

^b Graduate Faculty of the Environment, University of Tehran, P.O. Box 14155-6135, Tehran, Iran

ARTICLE INFO

Keywords: Big data Hybrid renewable energy systems Iran Multivariate statistical analysis Techno-econo-socio-environmental model Sustainable development

ABSTRACT

In the present study, sustainable development is investigated in Iran using renewable energies-assisted Techno-Econo-Socio-Environmental Multivariate Analysis (TESEMA) as a novel holistic approach. Accordingly, six annual hourly consumption variables, reported by Iran's power industry from 2011 to 2017, are predicted using seven dynamic and intelligent models. Consequently, technical and economic variables are obtained by an optimal design of hybrid solar, wind, and biogas systems at 53 sites in Iran. Thirteen social variables are studied using a technique for order-preference by similarity to an ideal solution (TOPSIS) and six hazardous air pollutants are reported in Iran using a geographic information systems interpolation tool. Then, four major TESEMA variables are used in multivariate statistical analyses to reduce the big data diversity. Principal component analysis (PCA) is performed to find a linear model among the variables, and K nearest neighborhood (KNN) algorithm is used to cluster the sites according to the modeling results. A partial least square-based regression is conducted to investigate any correlation between major variables of TESEMA and population density in Iran. Finally, TESEMA development index (DI) and facial graphs are proposed as novel numerical and graphical sustainable development monitoring techniques, respectively. The results show that DNN is the best model to predict demand load in Iran (RMSE = 73.15%). Since DI varies in a wide range from 0 to 248.83 and the population density is significantly correlated with TESEMA variables ($R^2 = 91.86\%$), the current centralistic policies should be revised in Iran to reach sustainable development. Thus, a four-cluster management strategy accompanied by smart monitoring can efficiently lead to sustainable development in Iran.

1. Introduction

Sustainable development has become a driving paradigm of development in the 21st century. Sustainable development is defined as meeting the needs of the present without compromising the ability of future generations to meet their own needs [1]. Energy is an indispensable part of the sustainable development programs of competitive, industrialized, modern nations [2]. However, the precious resource of welfare and development turns to threat the sustainability aspect if only the low cost energy generation is mentioned in a short term policy. Thus, energy efficiency and renewable energy production are twin pillars of a sustainable energy system, and accordingly, much research has focused on these two topics [3].

Lee et al. [4] maximized the sustainability of an integrated wastewater treatment plant and a combined heat and power system using a novel, multi-objective optimization method. The total cost rate and total environmental impact were simultaneously minimized using a multi-objective genetic algorithm. In other research, a conventional steam power plant was promoted to an integrated absorption chiller and power plant in order to decrease water losses in the wet cooling tower. This alteration improved the energy conversion and thus the system's performance and ecological sustainability in an arid region [5]. Two highly efficient cogeneration systems were proposed based on Kalina and absorption refrigeration cycles. The systems were capable of reducing total annual costs by 8% while increasing thermal efficiency by approximately 5% [6]. Studies of this type focus on efficiency improvements in the existing energy systems.

Iran is a challenging case study among energy intensive countries where the energy consumption per capita is 10 times that of the European Union [7]. Thus, numerous research articles tackle the energy consumption problem using novel energy management methods. Royan et al. [8] investigated energy balance of peach production in a province of Iran. The results showed that direct and indirect shares of energy consumption were 50.98% and 49.02%, respectively. The authors

E-mail address: ckyoo@khu.ac.kr (C. Yoo).

http://dx.doi.org/10.1016/j.enconman.2017.10.014

^{*} Corresponding author.

Received 31 August 2017; Received in revised form 2 October 2017; Accepted 5 October 2017 0196-8904/ © 2017 Elsevier Ltd. All rights reserved.

Energy Conversion and Management 153 (2017) 257-277

Nomenclature		Abbreviations	
y(t)	model output at time <i>t</i>	API	air pollution index
n _a	number of poles	GIS	geographic information system
n_b	number of zeros plus 1	TESEMA	techno-econo-socio-environmental multivariate analysis
e(t)	white noise disturbance value	TOPSIS	technique for order-preference by similarity to ideal so-
n _c	number of coefficients		lution
n_k	number of input samples	SV	social variable
n _j Ar	system delay province area	SDI BSM2	social development index benchmark simulation model No. 2
Y	a matrix in the orthogonal coordinate system	AD	anaerobic digestion
B	regression coefficients	OPU	optimal power usage
F	residuals matrix	GL	total grid length
x_i	input to node <i>i</i>	GM	grid maturity
v_{ji}	connection weight between <i>i</i> and <i>j</i>	EP	excess power
\mathcal{Y}_k	output from node k	SR	social revenue
Z_j	output from hidden node <i>j</i>	EC	environmental cost
a_j	activation in the <i>j</i> th layer	AOC	annualized operation cost
a_i	activation in the <i>i</i> th layer connection weight	ACC TAC	annualized capital cost total annual cost
w _i b _i	connection bias	BF	biogas fraction
	ith observed value	EP	excess power
$y_i \\ y'_i$	<i>i</i> th predicted value	WF	wind fraction
x_{loc}	local demand load	SF	solar fraction
x_{pred}	predicted demand load	Lon.	longitude
P_r	population at an electrical region	Lat.	latitude
P_{des}	design population	Elev.	elevation
rf	regional load factor	ARX	autoregressive exogenous
$P_{load}(i)$	demand load at time <i>i</i>	ARMAX	autoregressive moving average exogenous
Р	power	OE	output error
r _{ij}	<i>j</i> th social variable in the <i>i</i> th province	BJ	Box–Jenkins
$P_{B,charge,mi}$ Y_{PV}	_{in} minimum battery charge limit PV module power output at STC	PLS RNN	partial least square recurrent neural network
f_{PV}	PV derating factor	DNN	deep neural network
$G_{T,STC}$	solar radiation incident at STC	RMSE	root mean square error
G_T	total solar radiation	Т	temperature
$T_{C,STC}$	PV cell temperature at STC	GHR	global horizontal irradiation
T_C	PV cell temperature	IDW	inverse distance weight
T_a	ambient temperature	PCA	principal component analysis
$T_{C,NOCT}$	nominal operating cell temperature	WS	wind speed
G_g	global radiation	NASA	National Aeronautics and Space Administration
G_d	diffuse radiation	SUNA	Renewable Energies Organization of Iran
R_b R_D	average beam on a tilted to a horizontal surface ratio average diffuse on a tilted to a horizontal surface ratio	IRMO PV	Iran meteorological Organization photovoltaic
F_{total}	total loss factor	WT	wind turbines
ρ_{hub}	air density at the hub height	BG	biogas generator
Z_0	surface roughness length	C	converter
Vanem	wind speed at anemometer height	В	battery
$Q_{\rm max}$	total capacity of the battery bank	DC	direct current
С	battery capacity ratio constant	AC	alternating current
k	battery capacity rate constant	HRES	hybrid renewable energies system
N_B	number of batteries	LPSP	loss of power supply probability
I _{max}	battery's maximum charge current	STC	standard test conditions
V_{nom}	nominal voltage	kbm	kinetic battery model
ir i	interest rate nominal discount rate	mcr mcc	maximum charge current
ı _{nom} f	inflation rate	тсс MNPC	maximum charge current modified net present cost
J lc	project lifetime	KNN	K nearest neighborhood
N _{ij}	projection value	PD	population density
c_l	cluster centroid	GWP	global warming potential
$\dot{\mathbf{A}}^{T}$	transpose of an orthogonal matrix		
S	random vector	Greek lett	ters
V	weighted normalized decision matrix		
cl_i^+	distance ratio	$\eta_{B,rt}$	battery round trip efficiency
E(C)	Euclidean norm	$\eta_{B,charge}$	battery charge efficiency

Download English Version:

https://daneshyari.com/en/article/5012192

Download Persian Version:

https://daneshyari.com/article/5012192

Daneshyari.com