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A B S T R A C T

The penetration of photovoltaic (PV) energy into modern electric power and energy systems has been gradually
increased in recent years due to its benefits of being abundant, inexhaustible and clean. In order to reduce the
negative impacts of PV energy on electric power and energy systems, advanced forecasting approach with high-
accuracy is a pressing need. Aimed at this, a novel hybrid method for deterministic PV power forecasting based
on wavelet transform (WT) and deep convolutional neural network (DCNN) is firstly proposed in this paper. WT
is used to decompose the original signal into several frequency series. Each frequency has better outlines and
behaviors. DCNN is employed to extract the nonlinear features and invariant structures exhibited in each fre-
quency. Then, a probabilistic PV power forecasting model that combines the proposed deterministic method and
spine quantile regression (QR) is originally developed to statistically evaluate the probabilistic information in PV
power data. The proposed deterministic and probabilistic forecasting methods are applied to real PV data series
collected from PV farms in Belgium. Numerical results presented in the case studies demonstrate that the pro-
posed methods exhibit the ability of improving forecasting accuracies in terms of seasons and various prediction
horizons, when compared to conventional forecasting models.

1. Introduction

Due to the global warming and climate change concerns, many
energy legislations and incentives, that can promote the use of renew-
able energy, have been established worldwide [1,2]. Among renewable
energy resources, PV energy, as one of the promising supplements for
fossil fuel-generated electricity, has received much attentions recently
because of the advantages of being abundant, inexhaustible and clean
[3]. The average annual growth of PV system is already up to 30% in
recent years [4]. Together with the ever-decreasing prices of PV mod-
ules and continuous depletion of fossil fuel, it is expected that the pe-
netration level of PV energy into modern electric power and energy
systems would be further increased. However, due to the chaotic and
erratic nature of the weather systems, the power output of PV energy
system always exhibits strong uncertainties in terms of intermittency,
volatility and randomness [5]. These uncertainties may potentially
degrade the real-time control performance, reduce system economics,
and thus pose a great challenge for the management and operation of
electric power and energy systems [6]. One of the promising solutions
for alleviating these negative impacts of these uncertainties on electric

energy system is the use of advanced forecasting methods of PV power.
Recognizing this task, indirect and direct forecasting models were
generally proposed in the literature.

In indirect methods, the environmental parameters associated with
PV system, like solar radiance, are firstly predicted [7], and then con-
verted to PV power via predetermined mathematical model relevant to
ambient temperature, panel areas and efficiency. In [8], a series of
smart baseline models for solar irradiation forecasting based on ma-
chine learning and genetic algorithm were originally proposed and
competitive performance was obtained accordingly. In [9], a hybrid
forecasting model combining Éclat data-mining algorithm, SVM and
glowworm swarm optimization was developed, and high forecasting
preciseness and reliability were statistically demonstrated. To improve
the forecasting accuracy, a transformation K-means based advanced
forecasting framework was mooted and applied to real PV data col-
lected from isolated PV farm in Iowa State [10]. While, direct methods
are designed to directly predict the output of PV system accordingly to
the historical PV data and relevant weather conditions. In [11], a multi-
step PV forecasting strategy in combination with least square SVM and
group data handling technique was proposed and a comprehensive
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analysis was performed and discussed. In [12], a novel PV power
forecasting approach based on dynamic ANN was proposed. It was
numerically demonstrated that the proposed approach has a better
learning capability and higher prediction accuracy compared to other
benchmarks. In [13], a family of multivariate adaptive regression
model was presented to predict the daily output of grid-connected PV
system.

The methodologies used in indirect and direct methods can be di-
vided into three categories: physical methods, statistical approaches
and soft-computing techniques [14]. Physical methods try to establish
an analytical model by using meteorological and geological parameters,
but they may not be suitable for fulfilling the real-time short-term
forecasting task due to the involved high-computational cost [15].
Statistical approaches manage to optimize a mapping relationship from
historical samples to real PV power via error minimization [16]. While,
soft-computing techniques are generally implemented to extract the

nonlinear features in parameters relevant to PV system [17]. It is these
features that can be utilized to improve PV forecasting accuracy.
Therefore, soft-computing based forecasting methods always exhibit a
more competitive performance than physical methods and statistical
approaches [18]. In [19], a feed-forward ANN based PV power fore-
casting framework was developed, and the model parameters were
further optimized by particle swarm optimization. In [20], a 24-hours-
ahead forecasting model based on fuzzy logic and ANN was developed.

However, the above-mentioned methods for PV power forecasting
and most of the published researches concentrate only on deterministic
forecast, i.e., point forecast. As presented in [21], deterministic fore-
casting methods fail to evaluate the uncertainties exhibited in PV power
data. Therefore, probabilistic PV power forecasting models that can
statistically describe these uncertainties have received much attention
recently. One of the mainstreams for generating probabilistic un-
certainty is to use an ensemble of deterministic forecaster. In [22], an

Nomenclature

ACE average coverage error
BPNN back-propagation neural network
db Daubechies
DCNN deep convolutional neural network
MAE mean absolute error
PI prediction interval
PV photovoltaic
RMSE root mean square error
SVM support vector machine
An wavelet approximation signal
DSu input dataset
H(•) indicative function
Ii

α PI at time step i given PINC
L number of layers
Li

α lower bound of PI given a target i and PINC
N number of samples
NS number of training samples
PVi

f the forecasting PV power
T length of a given signal
W weight matrix of DCNN
Wlog

L weight matrix at Lth logistic regression layer
+W j con

l
,

1 weight matrix of jth map at lth convolution layer
ε parameters used in cubic B-splines
bcon

l bias at lth convolution layer
blog

L bias matrix at Lth logistic regression layer
ci weight parameter in back propagation process
cj

l additive bias of the jth output map at lth layer
csub j

l
, additive bias matrix of jth map at lth layer

down (•) down-sampling function
g(t) signal required to be decomposed by wavelet
m mini-batch size of a training sample
q translation variable
tj

i the jth target of the ith sample in mini-batch
uL output vector of the neurons at (L − 1)th layer
uj

l the jth input at ith layer
wi j

l
, weight between the ith input map and jth output map

xi j k, , the element in a volume with i× j× k
−xi

l 1 the ith input map at (l− 1)th layer
yj

l the jth output map at lth layer
αi weight parameter in back propagation process
β multiplicative bias matrix of DCNN
βj

l multiplicative bias of the jth output map at lth layer
̂β (·) loss function of QR

δj
l the jth sensitivity map at lth layer

τ quantile parameter

ϕ(•) mother wavelet function
ANN artificial neural network
CRPS continuous ranking probability score
DBN deep belief network
IS interval sharpness
MAPE mean absolute percentage error
PINC prediction interval nominal confidence
QR quantile regression
SAE stacked auto-encoder
WT wavelet transform
Dn wavelet detail signal
Em squared-error loss function with m batches
Hei height of a given map
K parameters in cubic B-splines
Len length of a given map
Mj number of selected input maps
NL number of elements in a given volume
PVav average power of PV output
PVi

t the real PV power
Ui

α upper bound of PI given a target i and PINC
Wid width of a given map
Wcon

l weight matrix at lth convolution layer
b bias matrix of DCNN
bj

l jth bias at lth layer
+bj con

l
,

1 bias matrix of the jth map at lth convolution layer
c additive bias matrix of DCNN
cij underlying weight
csub

l additive bias matrix at lth sub-sampling layer
d output vector size of a training samples
f(•) sigmoid activation function
li indicator of PI coverage probability
p scaling variable
t discrete time step
ti the real power at ith time step
up (•) up-sampling function
wi weight parameter in feed forward process
x explanatory variable
xL−1 the output vector at (L − 1)th layer
yj

i the real value with respect to tj
i

α confidence level parameter
αij weight of the ith input map when forming jth output map
βsub

l multiplicative bias matrix at lth sub-sampling layer
βs coefficient vector
δi

α width of the PI at time step i given PINC
ρτ piecewise check function
η learning rate
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