Contents lists available at ScienceDirect

Energy conversion Management

Energy Conversion and Management

journal homepage: www.elsevier.com/locate/enconman

Multi-scale multi-objective optimization and uncertainty analysis of methane-fed solid oxide fuel cells using Monte Carlo simulations

Iman Gholaminezhad^a, Khosrow Jafarpur^{a,*}, Mohammad Hossein Paydar^b, Gholamreza Karimi^c

^a School of Mechanical Engineering, Shiraz University, Shiraz, Iran

^b Department of Materials Science and Engineering, School of Engineering, Shiraz University, Shiraz, Iran

^c Department of Chemical Engineering, Shiraz University, Shiraz, Iran

ARTICLE INFO

Keywords: Multi-objective Solid oxide fuel cell Direct internal reforming Multi-scale Monte Carlo simulation Pareto

ABSTRACT

In this work, a multi-objective optimization approach is adopted for methane fueled solid oxide fuel cells in both microstructural and operational points of view. The optimization procedure was performed at different stages where microstructural parameters were considered separately and also in combination with operational variables in 2-objective and 3-objective cases. Effective reaction area, total conductivity and average pore radius are taken as the micro-model objective functions while system efficiency and power density as the multi-scale objectives are to be maximized. Electronic phase volume fraction, porosity, fuel utilization and steam/methane ratio are some of the important design parameters. The results of multi-objective problem are presented in terms of Pareto fronts of non-dominated solutions in which the compromised designs depicted among them. By multi-objective optimization of the microstructure of a solid oxide fuel cell anode, optimal electronic and ionic particle size of 0.4 and 0.26 μ m, electronic volume fraction of 59% and porosity of 48% are determined. In addition, an optimum trade-off solution with 52% efficiency and 0.699 W/cm² power density is achieved by multi-scale multi-objective optimization of the system. Finally, an uncertainty analysis is implemented based on Monte Carlo simulations to show the statistical performance of system outputs as well as the probability of failure of system constraints.

1. Introduction

High temperature solid oxide fuel cells (SOFCs) have been identified as environmentally benign energy conversion device that have unique advantages such as high efficiency, high reaction kinetics and fuel flexibility. Despite recent theoretical and experimental progress in the theory of SOFCs, the technology still faces many challenges in a variety of aspects before it can evolve as a reliable energy production technology.

One of these aspects that remains lacking in the literature is the comprehensive performance optimization studies based on concurrent consideration of both microstructural and operational parameters of the system. The main prerequisite tool for optimization studies is mathematical models that can help us to understand complicated coupled phenomena within SOFCs. Several researchers investigated DIR SOFCs in different levels of complexity and from numerous aspects based on varying numerical and mathematical approaches. In this regard, T. X. Ho [1] presented a three dimensional dynamic numerical model of an anode-support DIR-SOFC subjected to unsteady condition. Tseronis

et al. [2] developed a DIR-SOFC model without separate reformer using COMSOL software. Aguiar et al. [3] proposed and analyzed a quasi-two dimensional steady state mathematical model of an anode-support intermediate temperature DIR-SOFC at different co-flow and counter-flow operating conditions. Iwata et al. [4] presented a quasi-two dimensional co- and counter-flows model of planar SOFC. Janardhanan et al. [5] studied the differences in efficiency and power density for isothermal and adiabatic operational regimes of planar DIR-SOFCs. Ni et al. [6] worked on the performance of SOFCs running on methane fuel considering the effect of electrode structural. Albrecht and Braun [7] compared 1-D versus quasi 2-D models for predicting temperature gradient and species concentration within the anode gas channel along the cell length. In a subsequent study, Albrecht and Braun [8] benchmarked 1-D versus quasi 2-D dynamic, interface charge transport models in a comparison paper against other models.

Micro-scale models have also been extensively developed and studied based on different approaches. Image processing based 2D and 3D reconstruction models are widely used for microstructure design and optimization of SOFCs [9–11]. Celik et al. [9] developed micro-level

* Corresponding author.

http://dx.doi.org/10.1016/j.enconman.2017.10.011

E-mail addresses: iman.gholaminezhad@shirazu.ac.ir (I. Gholaminezhad), kjafarme@shirazu.ac.ir (K. Jafarpur), paaydar@shirazu.ac.ir (M.H. Paydar), ghkarimi@shirazu.ac.ir (G. Karimi).

Received 20 June 2017; Received in revised form 2 October 2017; Accepted 3 October 2017 0196-8904/ @ 2017 Elsevier Ltd. All rights reserved.

Nomenclature

		\dot{N}_{f}^{0}
С	molar concentration (mol m^{-3})	ne
D_i^{eff}	effective Fickian diffusivity of species i (m ² s ⁻¹)	
D_{ii}^{eff}	effective binary diffusivity (m ² s ⁻¹)	rg
D_{ik}^{eff}	effective Knudsen diffusivity for species k ($m^2 s^{-1}$)	
$F^{',\kappa}$	Faraday's constant (96487 C mol ^{-1})	Greek
i	operating current density $(A m^{-2})$	
N	molar flux (mol $m^{-2} s^{-1}$)	β
Р	total pressure (Pa)	β_i
P_i	partial pressure of species i (Pa)	α_i
R	universal gas constant (8.314 J mol ⁻¹ K ⁻¹)	η
Т	temperature (K)	φ
y_i	mole fraction of species i	Θ_{1V}
B_0	flow permeability (m ²)	$\lambda_{TPB,eff}$
L	channel length (m)	μ
W	channel width (m)	φ_{g}
Ar	aspect ratio of fuel or air channel	ψ_k
D_c	channel hydraulic diameter (m)	ψ_k^{i}
K^{eq}	equilibrium constant (Pa²,–)	σ_{ed}^{egg}
	pre-exponential constant (varies)	$\sigma_{el}^{e_{ff}}$
k	rate constants (varies)	σ_k^0
Ref	product of the Reynolds number and friction factor	τ
r	rate of reaction (mol $m^{-2} s^{-1}$, mol $m^{-3} s^{-1}$)	θ
t	thickness or height (m)	
U	velocity (m s ⁻¹)	Subscript
V_{cell}	cell voltage (V)	
U_{f}	fuel utilization	MSR
X_{CH4}	methane conversion	WGS
S/M	steam to methane ratio	OX C
V_{OCV}	open circuit voltage (V)	sf
$V_{leakage}$	leakage voltage (V)	sa
$E_{act,i}$	activation energy of <i>i</i> electrode $(J \text{ mol}^{-1})$	IPB
j_{TPB}	charge transfer rate per unit TPB length (A m ⁻¹)	act
$\dot{J}_{0,i}$	local exchange transfer current per unit TPB length of <i>i</i>	0nm 1.
	electrode (A m ⁻¹)	K
J _{ref,i}	current density at reference temperature (A m ⁻¹)	eff
i _{ion}	local ionic current density (A m ⁻²)	ref
i _{el}	local electronic current density (A m ⁻²)	el
$i_{e,i}^{v}$	volumetric charge transfer rate (A m ⁻³)	lon
M_{α}	molecular weight of species α (Kg mol ⁻¹)	L
n_k^{ν}	number of k-particle per unit volume	A/C
P_k	percolation probability of k-particle	A/E
T _{ref}	reterence temperature (K)	s 6
$Z_{k,l}$	average number of contacts between a k-particle and l-	u
\approx	particle	C
Z	overall average coordination number of all solid particles	

modeling of SOFCs for accurate estimation of real stresses for performance improvement. Hamedani et al. [10] characterized the microstructure of a porosity-graded cathode of SOFCs using ion beam and scanning electron microscopy. Taillon et al. [11] investigated the microstructure and connectivity of composite cathodes using dual beam focused ion beam in order to determine the effect of various contaminants on the performance of the SOFCs. Resistor network models are also investigated for microstructure analysis of SOFCs [12,13]. Jeon et al. [12] used a resistor network model for anodic performance enhancement by introducing penetrating electrolyte structure. Schneider et al. [13] deployed resistor network model to determine effective electrode conductivity based on a particle packing numerical approach. Electrode micro-models are also popular among researchers for optimization of electrode microstructure [14-16]. Nam and Jeon [14] developed a comprehensive micro-scale model for detailed description of micro-scale transport in SOFCs. Jeon et al. [15] optimized a two-

	lower heating value
N_f^0	total molar flow rate of the fuel stream (mol s^{-1})
n _e	number of electrons participating in the electrochemical
	reaction
r _g	pore radius (m)
Greek	
_	
β	channel mass transfer coefficient (m s ⁻¹)
β_i	cathodic charge transfer coefficient of electrode i
α_i	anodic charge transfer coefficient of electrode <i>i</i>
η	overpotential (V)
ϕ	potential (V)
Θ	relative coverage
$\lambda_{TPB,eff}^V$	percolated TPB length per unit volume (m ²)
μ	dynamic viscosity (Kg m ⁻¹ s ⁻¹)
ϕ_{g}	porosity
ψ_k	volume fraction of k-particle in solid phase
ψ_k^t	threshold volume fraction of k-particles
σ_{ad}^{eff}	effective electronic conductivity (S m^{-1})
σ_{J}^{eff}	effective ionic conductivity (S m^{-1})
σ_{l}^{0}	electric conductivity of k-material in dense solid (S m ^{-1})
τ_{κ}	tortuosity of gas transport path
A	contact angle between electrode and electrolyte particles
17	(1)
0	contact angle between electrode- and electrolyte particles
Subscripts	and superscripts
Subscripts	and superscripts
Subscripts MSR	and superscripts methane steam reforming reaction
Subscripts MSR WGS	and superscripts methane steam reforming reaction water gas shift reaction
Subscripts MSR WGS OX	and superscripts methane steam reforming reaction water gas shift reaction electrochemical oxidation
Subscripts MSR WGS OX sf	and superscripts methane steam reforming reaction water gas shift reaction electrochemical oxidation fuel species
Subscripts MSR WGS OX sf	and superscripts methane steam reforming reaction water gas shift reaction electrochemical oxidation fuel species air species
Subscripts MSR WGS OX sf sa TPB	<i>and superscripts</i> methane steam reforming reaction water gas shift reaction electrochemical oxidation fuel species air species triple phase boundary
Subscripts MSR WGS OX sf sa TPB act	and superscripts methane steam reforming reaction water gas shift reaction electrochemical oxidation fuel species air species triple phase boundary activation
Subscripts MSR WGS OX sf sa TPB act ohm	and superscripts methane steam reforming reaction water gas shift reaction electrochemical oxidation fuel species air species triple phase boundary activation obmic
Subscripts MSR WGS OX sf sa TPB act ohm k	and superscripts methane steam reforming reaction water gas shift reaction electrochemical oxidation fuel species air species triple phase boundary activation ohmic reaction index
Subscripts MSR WGS OX sf sa TPB act ohm k eff	and superscripts methane steam reforming reaction water gas shift reaction electrochemical oxidation fuel species air species triple phase boundary activation ohmic reaction index effective
Subscripts MSR WGS OX sf sa TPB act ohm k eff ref	and superscripts methane steam reforming reaction water gas shift reaction electrochemical oxidation fuel species air species triple phase boundary activation ohmic reaction index effective reference
Subscripts MSR WGS OX sf sa TPB act ohm k eff ref el	and superscripts methane steam reforming reaction water gas shift reaction electrochemical oxidation fuel species air species triple phase boundary activation ohmic reaction index effective reference electrochemical activation
Subscripts MSR WGS OX sf Sa TPB act ohm k eff ref el ion	and superscripts methane steam reforming reaction water gas shift reaction electrochemical oxidation fuel species air species triple phase boundary activation ohmic reaction index effective reference electrode-particle electrode-particle
Subscripts MSR WGS OX sf sa TPB act ohm k eff ref el ion t	and superscripts methane steam reforming reaction water gas shift reaction electrochemical oxidation fuel species air species triple phase boundary activation ohmic reaction index effective reference electrode-particle electrolyte-particle total
Subscripts MSR WGS OX sf Sa TPB act ohm k eff ref el ion t	and superscripts methane steam reforming reaction water gas shift reaction electrochemical oxidation fuel species air species triple phase boundary activation ohmic reaction index effective reference electrode-particle electrolyte-particle total
Subscripts MSR WGS OX sf sa TPB act ohm k eff ref el ion t A/C	and superscripts methane steam reforming reaction water gas shift reaction electrochemical oxidation fuel species air species triple phase boundary activation ohmic reaction index effective reference electrode-particle electrolyte-particle total anode channel interface
Subscripts MSR WGS OX sf sa TPB act ohm k eff ref el ion t A/C A/E	and superscripts methane steam reforming reaction water gas shift reaction electrochemical oxidation fuel species air species triple phase boundary activation ohmic reaction index effective reference electrode-particle electrolyte-particle total anode channel interface anode electrolyte interface
Subscripts MSR WGS OX sf sa TPB act ohm k eff ref el ion t A/C A/E s	and superscripts methane steam reforming reaction water gas shift reaction electrochemical oxidation fuel species air species triple phase boundary activation ohmic reaction index effective reference electrode-particle electrolyte-particle total anode channel interface anode electrolyte interface surface
Subscripts MSR WGS OX sf sa TPB act ohm k eff ref el ion t A/C A/E s a	and superscripts methane steam reforming reaction water gas shift reaction electrochemical oxidation fuel species air species triple phase boundary activation ohmic reaction index effective reference electrode-particle electrodyte-particle total anode channel interface anode electrolyte interface surface anode
Subscripts MSR WGS OX sf sa TPB act ohm k eff ref el ion t A/C A/E s a c	and superscripts methane steam reforming reaction water gas shift reaction electrochemical oxidation fuel species air species triple phase boundary activation ohmic reaction index effective reference electrode-particle electrolyte-particle total anode channel interface anode cathode

layered cathode in anode-supported SOFCs based on a numerical microscale model. Ni et al. proposed mathematical model of functionally graded electrodes at the micro-scale level. Percolation based micromodels are simple and efficient for predicting effective properties of composite electrodes [17–19]. Chen et al. [17] suggested a percolation based micro-model which considered binary and multi-component mixtures of particles for predicting effective electrode properties. In another study, Chen et al. [18] developed a percolation micro-model to predict effective properties electrode consisting of poly-dispersed electronic and ionic conducting particles. Bertei and Nicolella [19] proposed a percolation model by accounting for polydispersion of powders and presence of pore formers.

Such micro-models are widely used in microstructural studies for optimization of porous SOFC electrodes [20,21] and in combination with macro-models for analyzing the effect of microstructural parameters on system output performance [22,23]. Liu et al. [20] offered a

.

Download English Version:

https://daneshyari.com/en/article/5012204

Download Persian Version:

https://daneshyari.com/article/5012204

Daneshyari.com