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A B S T R A C T

Experimental design and response surface methodology are useful tools for studying, developing and optimizing
a wide range of engineering systems. This tutorial provides a summary and discussion on their use in energy
applications. The theory and relevant calculations are clearly presented and discussed along with model diag-
nostics and interpretation. This is followed by a review of recent reports within the energy field. Overall, this
contribution will clarify many aspects of experimental design and response surface methodology that are often
confusingly discussed in the academic literature and summarizes relevant applications where they have been
found useful.

1. Introduction

Experimental design is a collection of tools used for studying the
behavior of a system. Experimental design, or design of experiments,
involves planning and performing a set of experiments to determine the
effects of experimental variables on that system. The acquired data is
separated into variation generated by the system itself and respective
uncertainties or errors always present in empirical data. A statistically
valid model is obtained, which by definition contains information on
the effects of experimental conditions on the direction and magnitude
of the measured response. The required experiments are also performed
in a way that maximizes the information that can be extracted from a
limited number of experiments. Once a satisfactory model has been
determined, it can be used for predicting future observations within the
original design range. Experimental design is thus useful for, not only
studying, but also developing and optimizing a wide range of en-
gineering systems. The method was originally developed by Fisher in
the 1930s through factorial designs and analysis of variance for agri-
cultural and biological research [1,2]. Response surface methodology
was first discussed in the 1950s by Box and Wilson within chemical
experimentation, and generally includes mathematical and statistical
tools for both the design and analysis of response surfaces [3–5]. In
practice, the methods are today closely related and the use of response
surface methodology is without exception based on experimental de-
signs. In this work, experimental design is used to refer to practices
included in both topics.

Experimental design is closely related to the mentality of learning

by experience and sequential experimentation. The effects and statis-
tical significance of a larger group of experimental variables can be
determined through factorial or screening designs, which enable
choosing the relevant variables or conditions for the next set of ex-
periments. Experimental designs are constructed in a way that elim-
inates or minimizes correlations between the chosen variables. This
allows independent estimation of variable effects and their potential
interactions. Here lies an important advantage of experimental design,
as the variables are not varied one at a time while the others are being
held constant. This approach assumes that the variables do not interact,
i.e., the effect of one variable stays the same even though the others
change. In many situations, this assumption can be unjustified. As an
example, increasing the concentration of a catalyst might lower the
temperature required for producing bio-oil of a specific quality. The
effect of temperature thus changes based on catalyst concentration,
indicating that the two variables interact.

Although experimental design is useful in many areas of energy
research, it has no natural connection to the studied system. What is
obtained is a simple mathematical approximation of the response based
on empirical data. More simple designs and models are often easier to
interpret, which increases their value in practical situations. The chosen
design also determines the level of detail and complexity that can be
described with the subsequent model. Factorial designs can be used for
quantifying linear and interaction effects, whereas optimization designs
allow describing more complex behavior by including higher order
model components.

The mathematical and statistical procedures of experimental design
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have been well documented (e.g. [6–9]). In addition, several reviews
have been published especially within analytical chemistry and food
engineering [10–20]. As an example, Bezerra et al. [14] provided a
good overview for the optimization of analytical methods and Leardi
[15] included a discussion of mixture design for more specialized ap-
plications. Experimental design and response surface methodology are
also frequently discussed in journals such as Technometrics published
by the American Statistical Association [21]. What is missing is a
practical tutorial that summarizes relevant reports on the use of ex-
perimental design within energy applications. This contribution aims to
fulfill that knowledge gap. The theory and relevant equations are
clearly presented and discussed along with model diagnostics and in-
terpretation. The calculations are also illustrated based on an imaginary
data set, which allows the reader to follow through the thought process.
This is followed by a review of recent reports within the energy field.
Overall, this contribution will clarify many aspects of experimental
design that are often confusingly discussed in the academic literature
and summarizes relevant applications where it has been found useful.

2. Materials and methods

This section describes the data set, relevant model calculations and
diagnostics along with details on data compilation and review.
Modeling results are then presented and discussed separately in
Sections 3 and 4. The discussed calculations are also illustrated based
on the data set. The calculations were performed using the Matlab
R2016a (The Mathworks, Inc.) software package, but can be performed
with any software capable of linear algebra. Open source alternatives
are also available. Data plotting was performed with the OriginPro
2015 (OriginLab Corp.) software package. Once the modeling results
have been presented and discussed, recently published work is re-
viewed to illustrate and discuss practical examples from the energy
field.

2.1. The data set

The data set describes experiments that were performed to de-
termine the effect of temperature and catalyst concentration on the
molecular weight of bio-oil (Table 1). The data set was kept small to
maintain simplicity. The temperature was varied within 160–320 °C
and the catalyst concentration within 0.2–0.8%. The molecular weights
of the attained oils were chromatographically determined and were in
the range 0.59–2.0 kg mol−1. A lower molecular weight was favorable
to increase the performance of the oil in subsequent applications. The
experimental order was randomized to minimize systematic errors.

The experiments were organized according to a face-centered cen-
tral composite design with two variables or design factors and three
replicated center-point experiments. A total of 11 experiments were
performed. As illustrated in Table 1, the design included three levels for
each variable and can be used for quantifying linear, interaction and
higher-order model terms. The first four experiments in Table 1 equal a

full factorial design on two variables. Factorial designs generally con-
tain only two variable levels, a minimum and a maximum, and are
described with the abbreviation 2k, where k denotes the number of
variables in the design. Experiments 5–8 are called star-points and are
added to central composite designs for calculating higher order model
components. Their distance α is expressed in coded units from the de-
sign center and is generally dictated by the problem at hand. Setting α
as 1 or 2k4 are secure choices. The value 2k4 guarantees rotatability,
i.e., spherical prediction variance around the design center. Experi-
ments 9–11 are replicated center-points and enable estimating true
replicate error.

Central composite designs were first introduced by Box and Wilson
in 1951 [3] and together with Box Behnken designs [22] have become
one of the most common designs used for quadratic models. In general,
many different designs are available in the literature, both for screening
and optimization purposes, and will not be discussed here. The inter-
ested reader is recommended to turn to the many books or commercial
software available in the field. Some common designs in two dimen-
sions are illustrated in Fig. 1. The same logic applies in three or more
dimensions.

2.2. Coding and model coefficients

Modeling is based on approximating the true behavior of a response:

= ⋯ +y f ϕ ϕ ϕ ε( , , , )k1 2 (1)

where y denotes the measured response as a function of …ϕ ϕ ϕ( , , , )k1 2
variables and other sources of variability ε. The variable values are
coded to compare their effects within the design range:
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where xi denotes a coded value and ϕi, ϕmin and ϕΔ the respective
variable value, minimum variable value and variable range, all in ori-
ginal units. In this way, the factorial design points in Table 1 range from
−1 to 1 and the design center is situated at (0, 0). A quadratic re-
gression equation is generally used to approximate y:

Table 1
The data set based on a central composite design with two variables.

Experiment Temperature (°C) Catalyst (%) Molecular weight (kg mol−1)

1 160 0.2 2.0
2 320 0.2 0.85
3 160 0.8 1.8
4 320 0.8 1.0
5 160 0.5 1.7
6 320 0.5 0.59
7 240 0.2 1.4
8 240 0.8 1.2
9 240 0.5 0.89
10 240 0.5 1.2
11 240 0.5 0.94

Fig. 1. Some common designs in two dimensions; (a) a factorial design, (b) a central
composite design with a coded star-point distance α = 1, (c) a central composite design
with α > 1 and (d) a Box Behnken design.
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