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a b s t r a c t

The goal of this study was to develop a statistical bivariate wind speed-wind shear model (WSWS). The
development of WSWS is based on near surface wind speed data available from 397 measurement sta-
tions distributed over Germany, as well as on ERA-Interim reanalysis wind speed data available in
1000 m above ground level (a.g.l.). These data were used (1) to calculate empirical distributions of wind
speed in 1000 m a.g.l., (2) empirical distributions of the wind shear exponent, and (3) to fit theoretical
distributions to the empirical wind speed and wind shear exponent distributions. It was found that the
four parameter Johnson SB distribution reproduces the shape of the wind speed in 1000 m a.g.l. empirical
distributions best. The four parameter Dagum distribution provided good fits to the empirical wind shear
distributions. The parameterized wind speed and wind shear marginal distributions were then linked by
16 joint copulas. Goodness-of-fit evaluation of the joint copulas demonstrates that the Gaussian-
Gaussian copula reproduces the empirical bivariate wind speed-wind shear distribution most accurately.
By usingWSWS it is possible to continuously calculate the wind speed probability density function in hub
heights between 10 m a.g.l. and 200 m a.g.l. This allows WSWS to be applied to virtually any power curve
for computing the wind energy yield and capacity factor in the analyzed hub height range. A one-time
site-specific parametrization of WSWS is sufficient for a comprehensive height-dependent exploitation
of the available wind resource.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The current global electricity consumption is mainly covered by
conventional fuels [1]. However, it is essential to find appropriate
substitutes for conventional fuels. First, their utilization is strongly
connected with greenhouse gas emissions, which cause climate
change [2]. Second, emission of air pollutants by combustion pro-
cesses can impair human health [3]. Moreover, the peaking of fossil
fuels is anticipated in the next decades [4]. It is expected that wind
energy will be one important substituent for conventional fuels
and plays a major role in the future energy mix [2].

Wind turbines are used to convert the kinetic energy of the air-
flow first into mechanical and then into useful electric energy [5].
The countries with largest installed wind energy capacity in 2016
were China (168,690 MW), the USA (82,184 MW) and Germany
(50,018 MW) [6]. From these three countries Germany has by far
the highest wind turbine density with 0.076 wind turbines/km2

and an average capacity of �1.68 MW per onshore wind turbine.
At the end of 2016, a total of 27,270 onshore and 947 offshore wind

turbines were installed in Germany [7] and the share of renewable
energies in the electricity consumption was 31.7% corresponding
to a gross electricity production of about 188 billion kWh [8]. In
the same year, wind energy covered 13.0% of Germany’s gross elec-
tricity consumption. According to the German Renewable Energies
Act in the version issued 2014, Germany aims to further increase
the share of renewable energies until 2025 to 40–45% and until
2035 to 55–60%. To achieve these goals, a massive installation of
new wind turbines is necessary.

Prior to installation of wind turbines accurate wind resource
assessment is necessary [9–11]. Wind resource assessment can
be carried out by connecting wind speed (x) and characteristics
of the land surfaces [12]. Often, the wind power density function
is used as an important indicator for the available wind resource
[13]. It is estimated by

PðxÞ ¼ 1
2
qx3f ðxÞ ð1Þ

where q is the air density. Accordingly, P increases with the cube of
x, which means that a rather small error in the assessment of x leads
to a large estimation error of the available wind resource. The mean
wind power density (�P) is often used as a qualitative magnitude to
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Nomenclature

Acronyms
a.g.l. above ground level
a.s.l. above sea level
B three parameter Burr distribution
B4 four parameter Burr distribution
BB seven parameter Burr-Burr distribution
BD seven parameter Burr-Dagum distribution
BG six parameter Burr-Gamma distribution
BGEV seven parameter Burr-Generalized Extreme Value dis-

tribution
BN six parameter Burr-Normal distribution
BW six parameter Burr-Weibull distribution
C1 case one: x1000m � 9.0 m/s
C2 case two: x1000m > 9.0 m/s
CC Clayton-Clayton copula
cdf cumulative distribution function
CF Clayton-Frank copula
CG Clayton-Gaussian copula
CGu Clayton-Gumbel copula
D four parameter Dagum distribution
D3 three parameter Dagum distribution
DD seven parameter Dagum-Dagum distribution
DG six parameter Dagum-Gamma distribution
DGEV seven parameter Dagum-Generalized Extreme Value

distribution
DN six parameter Dagum-Normal distribution
DW six parameter Dagum-Weibull distribution
ecdf empirical cumulative distribution function
epdf empirical probability density function
FC Frank-Clayton copula
FF Frank-Frank copula
FG Frank-Gaussian copula
FGu Frank-Gumbel copula
G two parameter Gamma distribution
G3 three parameter Gamma distribution
GC Gaussian-Clayton copula
GEV three parameter Generalized Extreme Value distribu-

tion
GEVG six parameter Generalized Extreme Value-Gamma dis-

tribution
GEVGEV seven parameter Generalized Extreme Value-

Generalized Extreme Value distribution
GEVN six parameter Generalized Extreme Value-Normal dis-

tribution
GEVW six parameter Generalized Extreme Value-Weibull dis-

tribution
GF Gaussian-Frank copula
GG Gaussian-Gaussian copula
GG5 five parameter Gamma-Gamma distribution
GGu Gaussian-Gumbel copula
GN five parameter Gamma-Normal distribution
Gu two parameter Gumbel distribution
GuC Gumbel-Clayton copula
GuF Gumbel-Frank copula
GuG Gumbel-Gaussian copula
GuGu Gumbel-Gumbel copula
GW five parameter Gamma-Weibull distribution
hhr hub height range (m)
JSB four parameter Johnson SB distribution
JSU four parameter Johnson SU distribution
K four parameter Kappa distribution
LMOM L-moment method
LSE least squares estimation method
MLE maximum likelihood estimation method

MOM moment method
N two parameter truncated Normal distribution
NN five parameter Normal-Normal distribution
No two parameter Normal distribution
NW five parameter Normal-Weibull distribution
pch combination of power curve and hub height
pdf probability density function
PEM parameter estimation method
Ray one parameter Rayleigh distribution
Ray2 two parameter Rayleigh distribution
S abbreviation
W two parameter Weibull distribution
W3 three parameter Weibull distribution
Wak five parameter Wakeby distribution
WSWS wind speed-wind shear model
WW five parameter Weibull-Weibull distribution

Symbols
U cumulative distribution function of standard normal

distribution
�PW average wind turbine power output (W)
~R2 median of coefficient of determination
ud cumulative distribution function of a multivariate nor-

mal distributiongAEY median annual average wind energy yield over all com-
binations of power curve and hub height (GWh/yr)

~E median power law exponent
�F mean of empirical cumulative distribution function val-

ues
F̂ estimated cumulative distribution functionfM0 median of the comprehensive goodness-of-fit metricgMPA median of percentage error of the mean of the cubes of

wind speed (%)
Mmax maximum of GoF-metric
Mmin minimum of GoF-metric
�P average wind power density (W/m2)
�X mean of the variable X
X̂ estimated value of the variable Xecf median capacity factor over all combinations of power

curve and hub height
�x average of daily mean wind speed in the investigation

period (m/s)
~x median wind speed (m/s)P

covariance matrix
AEY annual average wind energy yield (GWh/yr)
c Gaussian copula
cf capacity factor
E power law exponent
f probability density function
F cumulative distribution function
h height a.g.l. (m)
ho number of hours in a year
k kth case
M goodness-of-fit metric
M0 comprehensive goodness-of-fit metric
MPA percentage error of the mean of the cubes of wind speed

(%)
n sample size
nn number of goodness-of-metrics
NP number of parameters
o marginal distribution
P wind power density (W/m2)
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