ELSEVIER

Contents lists available at ScienceDirect

Energy Conversion and Management

journal homepage: www.elsevier.com/locate/enconman

Development of a statistical bivariate wind speed-wind shear model (WSWS) to quantify the height-dependent wind resource

Christopher Jung*, Dirk Schindler

Environmental Meteorology, Albert-Ludwigs-University of Freiburg, Werthmannstrasse 10, D-79085 Freiburg, Germany

ARTICLE INFO

Article history: Received 26 May 2017 Received in revised form 6 July 2017 Accepted 15 July 2017

Keywords: Wind energy Power law Copulas Johnson SB distribution Dagum distribution Germany

ABSTRACT

The goal of this study was to develop a statistical bivariate wind speed-wind shear model (WSWS). The development of WSWS is based on near surface wind speed data available from 397 measurement stations distributed over Germany, as well as on ERA-Interim reanalysis wind speed data available in 1000 m above ground level (a.g.l.). These data were used (1) to calculate empirical distributions of wind speed in 1000 m a.g.l., (2) empirical distributions of the wind shear exponent, and (3) to fit theoretical distributions to the empirical wind speed and wind shear exponent distributions. It was found that the four parameter Johnson SB distribution reproduces the shape of the wind speed in 1000 m a.g.l. empirical distributions best. The four parameter Dagum distribution provided good fits to the empirical wind shear distributions. The parameterized wind speed and wind shear marginal distributions were then linked by 16 joint copulas. Goodness-of-fit evaluation of the joint copulas demonstrates that the Gaussian-Gaussian copula reproduces the empirical bivariate wind speed-wind shear distribution most accurately. By using WSWS it is possible to continuously calculate the wind speed probability density function in hub heights between 10 m a.g.l. and 200 m a.g.l. This allows WSWS to be applied to virtually any power curve for computing the wind energy yield and capacity factor in the analyzed hub height range. A one-time site-specific parametrization of WSWS is sufficient for a comprehensive height-dependent exploitation of the available wind resource.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The current global electricity consumption is mainly covered by conventional fuels [1]. However, it is essential to find appropriate substitutes for conventional fuels. First, their utilization is strongly connected with greenhouse gas emissions, which cause climate change [2]. Second, emission of air pollutants by combustion processes can impair human health [3]. Moreover, the peaking of fossil fuels is anticipated in the next decades [4]. It is expected that wind energy will be one important substituent for conventional fuels and plays a major role in the future energy mix [2].

Wind turbines are used to convert the kinetic energy of the airflow first into mechanical and then into useful electric energy [5]. The countries with largest installed wind energy capacity in 2016 were China (168,690 MW), the USA (82,184 MW) and Germany (50,018 MW) [6]. From these three countries Germany has by far the highest wind turbine density with 0.076 wind turbines/km² and an average capacity of \sim 1.68 MW per onshore wind turbine. At the end of 2016, a total of 27,270 onshore and 947 offshore wind

turbines were installed in Germany [7] and the share of renewable energies in the electricity consumption was 31.7% corresponding to a gross electricity production of about 188 billion kWh [8]. In the same year, wind energy covered 13.0% of Germany's gross electricity consumption. According to the German Renewable Energies Act in the version issued 2014, Germany aims to further increase the share of renewable energies until 2025 to 40–45% and until 2035 to 55–60%. To achieve these goals, a massive installation of new wind turbines is necessary.

Prior to installation of wind turbines accurate wind resource assessment is necessary [9-11]. Wind resource assessment can be carried out by connecting wind speed (x) and characteristics of the land surfaces [12]. Often, the wind power density function is used as an important indicator for the available wind resource [13]. It is estimated by

$$P(x) = \frac{1}{2}\rho x^3 f(x) \tag{1}$$

where ρ is the air density. Accordingly, P increases with the cube of x, which means that a rather small error in the assessment of x leads to a large estimation error of the available wind resource. The mean wind power density (\bar{P}) is often used as a qualitative magnitude to

^{*} Corresponding author.

E-mail address: christopher.jung@mail.unr.uni-freiburg.de (C. Jung).

Nomenclature

Ass.l. above ground level Ass.l. above ground level Ass.l. above ground level Ass.l. above sea leved Ass.l. above sea level Ass.l. above sea leve	Acronym	c	MOM	moment method
a.s.l. above sea level Here parameter Burr distribution Four parameter Burr distribution Four parameter Burr distribution Ba seven parameter Burr distribution Ba seven parameter Burr distribution Ba seven parameter Burr-Dogum distribution Ba seven parameter Burr-Dogum distribution Ba seven parameter Burr-Dogum distribution Ba seven parameter Burr-Ormanal distribution Ba six parameter Burr-Generalized Extreme Value distribution Ba six parameter Burr-Merbill distribution Ba six parameter Burr-Merbill distribution Ba six parameter Burr-Weibill distribution Case one: 8, 100m; 3 0 m/s Case one: 8, 100				
three parameter Burr distribution BB seven parameter Burr Dayam distribution BC seven parameter Burr-Dayam distribution BC seven parameter Burr-Dayam distribution BC six parameter Burr-Webull distribution BC calcanter Burr-Webull		•		
BB Seven parameter Burn-Dagum distribution Pdf	В	three parameter Burr distribution	No	-
Seven parameter Burr-Dagum distribution PEM Seven parameter Burr-Generalized Extreme Value distribution Seven parameter Burr-Generalized Extreme Value distribution Six parameter Burr-Weibull distribution Six parameter Weibull distribution Six parameter Memorial distribution Six parameter Dagum distribution Six parameter Dagum-Dagum distribution Six parameter Dagum-Dagum distribution Six parameter Dagum-Dagum distribution Six parameter Dagum-Dagum distribution Six parameter Dagum-Normal dis	B4	four parameter Burr distribution	NW	five parameter Normal-Weibull distribution
BG EVE Set Sept parameter Burr-Genamized Extreme Value distribution six parameter Burr-Normal distribution six parameter Burr-Weibull distribution six parameter Burr-Weibull distribution with six parameter Generalized Extreme Value distribution with six parameter Generalized Extreme Value distribution seven parameter Dagum distribution seven parameter Dagum-Camma distribution seven parameter Dagum-Camma distribution seven parameter Dagum-Camma distribution seven parameter Dagum-Camma distribution seven parameter Dagum-Meibull distribution seven parameter Dagum-Weibull distribution seven parameter Gamma distribution seven parameter Generalized Extreme Value distribution seven parameter Generalized Extreme Value distribution seven parameter Gamma distribution sev			pch	
Section Sect				
tribution Note of the parameter Burr-Normal distribution So abservation So sparameter Burr-Normal distribution Co case two: xpooms 9.0 m/s Co case two: xpoo				
BN six parameter Burr-Normal distribution S abbreviation W stay parameter Burr-Normal distribution W two parameter Weibull distribution C1 case one: x _{1000m} > 9.0 m/s Wak Wak C2 Case two: x _{1000m} > 9.00 m/s Wak Wish C1 Cayton-Causian copula WW wind speed-wind shear model for parameter Neibull distribution C6 Clayton-Gaussian copula WW cumulative distribution function of standard normal distribution D6 Dray parameter Dagum distribution p cumulative distribution function of standard normal distribution average wind turbine power output (W) D7 parameter Dagum-Gamma distribution six parameter Dagum-Camma distribution six parameter Dagum-Normal distribution with six parameter Dagum-Normal distribution six parameter Dagum-Normal distribution function of standard normal distribution six parameter Dagum-Normal distribution function of six parameter Dagum-Normal distribution function of six parameter Dagum-Normal distribution function of power curve and hub height (GWhlyr) median of coefficient of determination or power curve and hub height (GWhlyr) function or power curve and hub height (Gwhlyr) function or power curve and hub height (Gwhlyr) function function or power curve and hub height (average wind energy yield over all combinations of power curve and hub height (average wind energy yield over all combinations of power curve and hub height (average wind energy sight over all	BGEV			
Sw parameter Burn-Weibull distribution Wak two parameter Weibull distribution five parameter Weibull distribution five parameter Weibull distribution five parameter Wakely distribution	DM			
C2 case from x spooms > 9.0 m/s C3 case from x spooms > 9.0 m/s C4 cayton-Cayton copula C5 cayton-Cayton copula C6 cayton-Cayton copula C7 cayton-Cayton copula C8 cayton-Cayton copula C9 cayton-Cayton distribution C9 cayton-Cayton copula C9 cayton-Ca		•		
CZ Cayron-Clayton copula Wak office parameter Makeby distribution Weap parameter Webull-Weibull distribution CG Clayton-Granks copula Symbols CG Clayton-Granks copula Symbols CG Clayton-Granke copula Curron-Granke copula Curron-Granke copula D four parameter Dagum distribution Repair of the parameter Dagum distribution of stap parameter Dagum-Dagum distribution Repair of the parameter Dagum-Granma distribution Repair of the parameter Dagum-Seam distribution Repair of the parameter deempy yield over all combinations of power curve and hub height (CWhlyr) Repair of the parameter deempy yield over all combinations of power curve and hub height (CWhlyr) Repair of the parameter deempy yield over all combinations of power curve and hub height (CWhlyr) Median power law exponent mean of the parameter deempy yield over all combinations of power curve and hub height (CWhlyr) median annual average wind energy yield over all combinations of power curve and hub height (CWhlyr) median power law exponent mean of the curve and hub height (CWhlyr) median annual average wind power demsity duration function of the parameter Generalized Extreme Value-distribution Miffs median of poerterical win				
CC Clayron-Capusian copula CC Clayron-Gaussian copula CG Clayron-Gaussian copula CG Clayron-Gaussian copula D four parameter Dagum distribution DB seven parameter Dagum distribution DB seven parameter Dagum-Generalized Extreme Value distribution DB symameter Dagum-Generalized Extreme Value distribution DB symameter Dagum-Hormal distribution DCEV symameter Dagum-Generalized Extreme Value distribution DB six parameter Dagum-Hormal distribution DCEV symameter Dagum-Weibull distribution DCEV symameter Generalized Extreme Value-Weibull distribution DCEV symameter Generalized Extreme				
def cumulative distribution function WW five parameter Weibull-Weibull distribution CG Clayton-Frank copula 5ymbos CG Clayton-Gumbel copula 4p D four parameter Dagum distribution Region for parameter Dagum distribution Region for parameter Dagum-Dagum distribution DD six parameter Dagum-Gamma distribution Region for parameter Dagum-Generalized Extreme Value distribution Region for parameter Dagum-Normal distribution Region for power curve and hub height (GWhlyr) DN six parameter Dagum-Normal distribution Fe Region for power curve and hub height (GWhlyr) DW six parameter Dagum-Normal distribution Fe Region for power curve and hub height (GWhlyr) DW six parameter Dagum-Normal distribution Fe Region for power curve and hub height (GWhlyr) DW six parameter Dagum-Normal distribution Fe Region for power curve and hub height (GWhlyr) DW six parameter Dagum-Normal distribution Fe Frank-Cayton copula Mr GT frank-Cayton copula Mr median power law exponent GW strank-Gumbel copula Mr median of percentage error o				
GC Clayton-Faink copula Symbols CG Clayton-Causha copula Φ cumulative distribution function of standard normal distribution D3 three parameter Dagum distribution Φ distribution D5 six parameter Dagum distribution RF median of coefficient of determination D5 six parameter Dagum-Ceneralized Extreme Value distribution AFY median of coefficient of determination D6 six parameter Dagum-Ceneralized Extreme Value distribution AFY median of coefficient of determination D7 six parameter Dagum-Normal distribution AFY median of coefficient of determination C6 six parameter Dagum-Normal distribution AFY median annual average wind energy yield over all combinations of power curve and hub height (GWhlyr) C6 feralk-Claustility density function F estimated cumulative distribution function values C6 feralk-Claustility density function F estimated cumulative distribution function values C6 feralk-Claustility density function F estimated cumulative distribution function values C7 feralk-Claustility density function median of percentage error of the mea				
GC Clayton-Caussian copula Symbols D four parameter Dagum distribution Φ cumulative distribution function of standard normal distribution D three parameter Dagum distribution R average wind turbine power output (W) DCEV seven parameter Dagum-Camma distribution Φ DCEV seven parameter Dagum-Normal distribution Text DN six parameter Dagum-Normal distribution E edf median power law exponent pedf empirical probability density function E FC Frank-Clayton copula M FF Frank-Caussian copula M FC Frank-Caussian copula M GC Gaussian-Clayton copula M GEV free parameter Generalized Extreme Value distribution M GEV free parameter Generalized Extreme Value-Generalized				The parameter Weiban Weiban distribution
Cou Clayton-Gumbel copula D four parameter Dagum distribution D seven parameter Dagum-Gamma distribution D seven parameter Dagum-Gamma distribution D seven parameter Dagum-Gamma distribution D seven parameter Dagum-Generalized Extreme Value distribution D seven parameter Dagum-Generalized Extreme Value distribution D six parameter Dagum-Meibuil distribution D six parameter Dagum-Generalized Extreme Value distribution D six parameter Dagum-Generalized Extreme Value distribution C second for parameter Dagum-Generalized Extreme Value distribution C for Frank-Carusian copula C for parameter Gamma distribution C for g six parameter Generalized Extreme Value distribution C for g six parameter Generalized Extreme Value-Generalized Extreme Value distribution C for g six parameter Generalized Extreme Value-Generalized Extreme Value-Generalized Extreme Value-Generalized Extreme Value-Generalized Extreme Value-Normal distribution C for g six parameter Generalized Extreme Value-Generalized Extreme Value-Normal distribution C for g six parameter Generalized Extreme Value-Normal distribution C for g six parameter Generalized Extreme Value-Normal distribution C for g six parameter Generalized Extreme Value-Normal distribution C for g six parameter Generalized Extreme Value-Normal distribution C for g six parameter Generalized Extreme Value-Normal distribution C for g six parameter Generalized Extreme Value-Normal distribution C for g six parameter Generalized Extreme Value-Normal distribution C for g six parameter Generalized Extreme Value-Normal distribution C for g six parameter Generalized Extreme Value-Normal distribution C for g six parameter Generalized Extreme Value-Normal distribution C for g six parameter Generalized Extreme Value-Normal distribution C for g six parameter Gener			Symbols	
D four parameter Dagum distribution	CGu		-	cumulative distribution function of standard normal
DD Seven parameter Dagum-Dagum distribution Six parameter Dagum-Genralized Extreme Value distribution Six parameter Dagum-Hormal distribution Six parameter Dagum-Hormal distribution Six parameter Dagum-Hormal distribution Six parameter Dagum-Weibull distribution Six parameter Generalized Extreme Value-Gamma distribution Six parameter Generalized Extreme Value-Generalized Extreme Value-Generalized Extreme Value-Generalized Extreme Value-Generalized Extreme Value-Normal distribution Six parameter Generalized Extreme Val	D	four parameter Dagum distribution		
DO seven parameter Dagum-Dagum distribution CG stop arameter Dagum-Generalized Extreme Value distribution DN six parameter Dagum-Normal distribution DN six parameter Dagum-Normal distribution DN six parameter Dagum-Weibull distribution Edif empirical cumulative distribution function funct	D3		$ar{P}_{\mathcal{W}}$	
Seven parameter Dagum-Generalized Extreme Value distribution Six parameter Dagum-Normal distribution Six parameter Dagum-Normal distribution Six parameter Dagum-Normal distribution Empirical cumulative distribution function Fmark-Calyation copula Fmark-Calyation copula Fmark-Caustion copula Fmark-Gaussian copula Fmark-Gaussian copula Fmark-Gaussian copula Fmark-Gaussian copula Fwarameter Generalized Extreme Value-Gamma distribution Six parameter Generalized Extreme Value-Weibull distribution Six parameter Generalized E				
Seven parameter Dagum-Ceneralized Extreme Value distribution AEY			φ_d	cumulative distribution function of a multivariate nor-
DN six parameter Dagum-Normal distribution DW six parameter Dagum-Weibull distribution Empirical cumulative distribution pdf empirical probability density function EF Frank-Clayton copula FF Frank-Gaussian copula FG Frank-Gumbel copula GG two parameter Gamma distribution GG three parameter Gamma distribution GEV three parameter Generalized Extreme Value-Generalized Extreme Value-Generalized Extreme Value-Generalized Extreme Value-Weibull distribution GF Gaussian-Frank copula GG Gaussian-Frank copula GF Gaussian-Frank copula GG Gaussian-Frank copula GF Gaussian-Frank copula GF Gaussian-Frank copula GG Gaussian-Guston opula GF Guston opula GF Guston opula GF Gaussian-Guston opula GF Guston	DGEV			
six parameter Dagum-Weibull distribution epdf empirical unulative distribution function epdf empirical probability density function FC Frank-Clayton copula FF Frank-Frank copula FG Frank-Gaussian copula FG two parameter Gamma distribution GG Gaussian-Clayton copula GEV three parameter Generalized Extreme Value distribution GEVGEV six parameter Generalized Extreme Value-Generalized Extreme Value-Generalized Extreme Value-Generalized Extreme Value-Generalized Extreme Value-Generalized Extreme Value-Normal distribution GEVG six parameter Generalized Extreme Value-Weibull distribution GEV six parameter Generalized Extreme Value-Normal distribution GEV six parameter Gamma-Gamma distribution FF curve and hub height average of daily mean wind speed in the investigation period (m/s) COVATIANCE COVATI	DM		AEY	
ecdf empirical cumulative distribution function epdf empirical cumulative distribution function valendified empirical cumulative distribution function in median of the comprehensive goodness-of-fit metric median of the comprehensive goodness-of-fit metric median of the comprehensive goodness-of-fit metric median of percentage error of the mean of the cubes of wind speed (%) maximum of GoF-metric minimum			~	
epdf Frank-Clayton copula Frank-Frank copula Frank-Frank copula Frank-Gaussian copula Frank-Gaussian copula Frank-Gambel Copula GCV Gaussian-Clausian-Caussian Copula GCV Gaussian-Gaussian-Caussian copula GCV Gaussian-Gaussian copula Kakh case Gaussian-Gaussian copula Kakh case Gaussian-Gaussian copula Kakh case Gaussian-Frank Copula Mayor Gaussian-Gaussian copula Mayor Gambel-Gaussian copula Mayor Gaussian-Gaussian copula Mayor			E	
Fig. Frank-Calyton copula FF Frank-Frank copula FG Frank-Gaussian copula FG Trank-Gaussian copula FG Wassian-Clayton copula FG GEV Gaussian-Clayton copula FG GEV Gaussian-Clayton copula FG F Gaussian-Frank copula FE Frank-Frank copula FF Frank-Gaussian copula FF Frank-Frank copula FF Frank-Frank copula FF Frank-Frank copula FF Frank-Frank-Gaussian copula			F	
Frank-Frank copula FG Frank-Gussian copula FG Frank-Gussian copula FG Frank-Gussian copula FG			Ê	
FGU Frank-Gumbel copula GC woo parameter Gamma distribution GC Gaussian-Clayton copula GEV three parameter Generalized Extreme Value distribution GEV three parameter Generalized Extreme Value-Gamma distribution GEVG six parameter Generalized Extreme Value-Gamma distribution GEVG six parameter Generalized Extreme Value-Gamma distribution GEVG six parameter Generalized Extreme Value-Gamma distribution GEVN six parameter Generalized Extreme Value-Normal distribution GEVN six parameter Generalized Extreme Value-Weibull distribution GEVN six parameter Generalized Extreme Value-Weibull distribution GEVN six parameter Generalized Extreme Value-Weibull distribution GG Gaussian-Frank copula GG Gaussian-Gumbel copula GG Gaussian-Gumbel copula GG Gaussian-Gumbel copula GN five parameter Gamma-Normal distribution GU two parameter Gamma-Normal distribution GUG Gumbel-Clayton copula GUG Gumbel-Gaussian copula My Goodness-of-fit metric Comprehensive goodness-of-fit metric Comprehensive goodness-of-fit metric Comprehensive goodness-of-metrics NPA DISB four parameter Fappa distribution NPA DISB four parameter Fappa distribution NPA L-moment method DISE least squares estimation method P wind power density (Wjm²)				
FGU Frank-Gumbel copula G two parameter Gamma distribution G3 three parameter Gamma distribution GEV three parameter Generalized Extreme Value distribution GEV six parameter Generalized Extreme Value-Generalized Extreme Value-Normal distribution GEV six parameter Generalized Extreme Value-Weibull distribution GEV six parameter Generalized Extreme Value-Weibull distribution GF Gaussian-Fank copula GG Gaussian-Gaussian copula GG Gaussian-Gaussian copula GG Gaussian-Gumbel copula GN five parameter Gamma-Normal distribution GN five parameter Gamma-Normal distribution GRU C Gumbel-Capus for Copula GUC Gumbel-Gaussian copula GUG Gumbel-Gaussian c				
three parameter Gamma distribution GC Gaussian-Clayton copula GEV tribution GEVG six parameter Generalized Extreme Value-Gamma distribution GEV seven parameter Generalized Extreme Value-Generalized Extreme Value-Generalized Extreme Value-Generalized Extreme Value-Generalized Extreme Value-Generalized Extreme Value-Off caussian-Gaussian copula GEV six parameter Generalized Extreme Value-Normal distribution GEV six parameter Generalized Extreme Value-Weibull distribution GF Gaussian-Frank copula GG Gaussian-Gaussian copula GG Gaussian-Gaussian copula GG Gaussian-Gaussian copula GG Gaussian-Gaussian copula GR Gaussian-Gaussian copula GR Gaussian-Gaussian copula GR Guisel-Caussian copula GR Guibel-Caussian copula GR Gumbel-Groups distribution GR Groups develops distribution AEY AEY Annual average wind power density (W/m²) covariance matrix average of daily mean wind speed (m/s) covariance matrix average of daily mean wind speed (m/s) covariance matrix annual average wind power density (W/m²) covariance matrix average of daily mean wind speed (m/s) covariance matrix average vima power alcrover all combinations of power density (W/m²)			MPA	
GC Gaussian-Clayton copula tino GEV three parameter Generalized Extreme Value distribution GEVG six parameter Generalized Extreme Value-Gamma distribution GEVG seven parameter Generalized Extreme Value-Generalized Extreme Value-Generalized Extreme Value-Generalized Extreme Value-Generalized Extreme Value-Generalized Extreme Value-Generalized Extreme Value-Normal distribution GEVN six parameter Generalized Extreme Value-Normal distribution GEVN six parameter Generalized Extreme Value-Weibull distribution GEVN six parameter Generalized Extreme Value-Normal distribution F covariance matrix AEY annual average wind energy yield (GWh/yr) GF Gaussian-Gaussian copula GF Gaussian-Gaussian copula GF Gaussian-Gaussian copula GF Gaussian-Gaussian developed distribution F cumulative distribution function height a.g.l. (m) percentage error of the mean of the cubes of wind speed (%) GEVOUR parameter Johnson SU distribution NP NP number of goodness-of-fit metric NP number of goodness-of-metrics NP number of parameters NP number of parameters NP number of paramete	G			
three parameter Generalized Extreme Value distribution GEVG six parameter Generalized Extreme Value-Gamma distribution GEVGEV seven parameter Generalized Extreme Value-Generalized Extreme Value-Generalized Extreme Value-Generalized Extreme Value-Generalized Extreme Value-Normal distribution GEVN six parameter Generalized Extreme Value-Normal distribution GF Gaussian-Frank copula GG Gaussian-Gaussian copula GG Gaussian-Gamma-Gamma distribution GGU Gaussian-Gumbel copula GN five parameter Gamma-Normal distribution GN five parameter Gamma-Normal distribution GUC Gumbel-Clayton copula GUC Gumbel-Clayton copula GUG Gumbel-Gussian copula GUG Gumbel-Gumbel copula GUG Gum	G3	three parameter Gamma distribution	M ^{max}	
GEVG Six parameter Generalized Extreme Value-Gamma distribution GEVGEV Seven parameter Generalized Extreme Value-Generalized Extreme Value-Generalized Extreme Value-United Six parameter Generalized Extreme Value-Normal distribution GEVN Six parameter Generalized Extreme Value-Normal distribution GEVN Six parameter Generalized Extreme Value-Weibull distribution GEVN Six parameter Generalized Extreme Value-Weibull distribution GEVN Six parameter Generalized Extreme Value-Weibull distribution GF Gaussian-Frank copula GG Gaussian-Gaussian copula GG Gaussian-Gaussian copula GG Gaussian-Gumbel copula GN Give parameter Gamma-Normal distribution GN Give parameter Gamma-Normal distribution GN Give parameter Gumbel distribution GN Gumbel-Clayton copula GUF Gumbel-Frank copula GUF Gumbel-Frank copula GUF Gumbel-Gaussian copula GUF Gumbel-Frank copula GUF Gumbel-Frank copula GUF Gumbel-Frank copula GUF Gumbel-Gaussian copula GUF Gumbel-Gaussian copula GUF Gumbel-Gaussian copula GUF Gumbel-Frank copula ARY ARY Annual average of daily mean wind speed in the investigation ARY annual average wind energy yield (GWh/yr) Gapacity factor Gaussian Gumbel (GWh/yr) AFY annual average wind energy yield (GWh/yr) AFY annual average ondia wara period (m/s) AFY annual average ondia wara period (m/s) AFY annual average ondia period (m/s) AFY annual average ondia period (m/s) AFY annual average ondia perod (m/s) Foragacity factor Guapacity factor GOV Gaussian Gumbel (GWh/yr) AFY annual average ondia perod (m/s) Foragacity f				
GEVG Six parameter Generalized Extreme Value-Gamma distribution GEVGEV Seven parameter Generalized Extreme Value-Generalized Extreme Value-Generalized Extreme Value-United Six parameter Generalized Extreme Value-Normal distribution GEVN Six parameter Generalized Extreme Value-Normal distribution GEVN Six parameter Generalized Extreme Value-Weibull distribution GEVN Six parameter Generalized Extreme Value-Weibull distribution GEVN Six parameter Generalized Extreme Value-Weibull distribution GF Gaussian-Frank copula GG Gaussian-Gaussian copula GG Gaussian-Gaussian copula GG Gaussian-Gumbel copula GN Give parameter Gamma-Normal distribution GN Give parameter Gamma-Normal distribution GN Give parameter Gumbel distribution GN Gumbel-Clayton copula GUF Gumbel-Frank copula GUF Gumbel-Frank copula GUF Gumbel-Gaussian copula GUF Gumbel-Frank copula GUF Gumbel-Frank copula GUF Gumbel-Frank copula GUF Gumbel-Gaussian copula GUF Gumbel-Gaussian copula GUF Gumbel-Gaussian copula GUF Gumbel-Frank copula ARY ARY Annual average of daily mean wind speed in the investigation ARY annual average wind energy yield (GWh/yr) Gapacity factor Gaussian Gumbel (GWh/yr) AFY annual average wind energy yield (GWh/yr) AFY annual average ondia wara period (m/s) AFY annual average ondia wara period (m/s) AFY annual average ondia period (m/s) AFY annual average ondia period (m/s) AFY annual average ondia perod (m/s) Foragacity factor Guapacity factor GOV Gaussian Gumbel (GWh/yr) AFY annual average ondia perod (m/s) Foragacity f	GEV		P v	
tribution GEVGEV seven parameter Generalized Extreme Value- Generalized Extreme Value distribution GEVN six parameter Generalized Extreme Value-Normal distribution Six parameter Generalized Extreme Value-Weibull distribution GEVN six parameter Generalized Extreme Value-Weibull distribution GF Gaussian-Frank copula GG Gaussian-Gaussian copula GG Gaussian-Gaussian copula GG Gaussian-Gamma-Gamma distribution GN five parameter Gamma-Normal distribution GN five parameter Gamma-Normal distribution GU two parameter Gamma-Normal distribution GU Gumbel-Clayton copula GUG Gumbel-Gaussian copula GUG Gumbel-Gaussian copula GUG Gumbel-Gaussian copula GUG Gumbel-Gaussian copula GUG Gumbel-Gumbel copula GUG Gumbel-Gaussian copula GUG Gumbel-Gau	CELIC		Λ Ŷ	
GEVGEV seven parameter Generalized Extreme Value- Generalized Extreme Value distribution GEVN six parameter Generalized Extreme Value-Normal distribution GEVW six parameter Generalized Extreme Value-Weibull distribution GF Gaussian-Frank copula GG Gaussian-Gaussian copula GG Gaussian-Gaussian copula GG Gaussian-Gumbel copula GR Gaussian-Gumbel distribution GR Gu Gaussian-Gumbel distribution GR Gu Gaussian-Gumbel copula GR Gumbel-Clayton copula GR Gumbel-Clayton copula GR Gumbel-Gaussian copula (%) GR Gumbel-Gaussian copula (%) GR Gumbel-Gaussian copula (%) GR Caussian copula A probability density function A probability density function A probability density function A probability density function A power law exponent A probability density function A probability dens	GEVG	•		
Generalized Extreme Value distribution GEVN six parameter Generalized Extreme Value-Normal distribution GEVW six parameter Generalized Extreme Value-Weibull distribution GEVW six parameter Generalized Extreme Value-Normal distribution GEVW six parameter Generalized Extreme Value-Normal distribution GEVW six parameter Generalized Extreme Value-Normal distribution F Gaussian copula GC Gaussian-Gupula GC Gaussian-Gumbel copula GU Gumbel-Clayton copula GU Gumbel-Gaussian copula M goodness-of-fit metric Comprehensive goodness-of-fit metric Comprehensive goodness-of-fit metric Comprehensive goodness-of-metrics (%) JSB four parameter Johnson SB distribution INPA percentage error of the mean of the cubes of wind speed (%) JSB four parameter Johnson SB distribution INPA number of goodness-of-metrics NP number of parameters LMOM L-moment method O marginal distribution LSE least squares estimation method P wind power density (W/m²)	CEVCEV		сJ	
GEVN six parameter Generalized Extreme Value-Normal distribution GEVW six parameter Generalized Extreme Value-Weibull distribution GF Gaussian-Frank copula GG Gaussian-Gaussian copula GG Gaussian-Gambal copula GG Gaussian-Gumbel copula GN five parameter Gamma-Normal distribution GU Gumbel-Clayton copula GU Gumbel-Frank copula GU Gumbel-Gaussian copula A Kath case GU Goundes-of-fit metric GU Gumbel-Gaussian copula M Comprehensive goodness-of-fit metric GU (%) JSB four parameter Johnson SB distribution MPA percentage error of the mean of the cubes of wind speed (%) JSB four parameter Johnson SU distribution INPA number of goodness-of-metrics NP number of parameters LMOM L-moment method O marginal distribution P wind power density (W/m²)	GEVGEV	1	<u>.</u>	
tribution Six parameter Generalized Extreme Value-Weibull distribution GF Gaussian-Frank copula GG Gaussian-Gaussian copula GG Gaussian-Gaussian copula GG Gaussian-Gumbal copula GR Gaussian-Gumbel distribution GR five parameter Gamma-Normal distribution GR five parameter Gumbel distribution GR Gumbel-Clayton copula GR Gumbel-Frank copula GR Gumbel-Gaussian copula GR Gumbel-Gaussian copula GR Gumbel-Gumbel copula GR Gumbel-Gumbel copula GR Gumbel-Gumbel copula GR five parameter Gamma-Weibull distribution Mr comprehensive goodness-of-fit metric GR five parameter Gamma-Weibull distribution MPA percentage error of the mean of the cubes of wind speed (%) JSB four parameter Johnson SB distribution R sample size JSU four parameter Kappa distribution NP number of goodness-of-metrics K four parameter Kappa distribution NP number of parameters LMOM L-moment method L-moment method LSE least squares estimation method P wind power density (W/m²)	CEVN		Χ	
GEVW six parameter Generalized Extreme Value-Weibull distribution GF Gaussian-Frank copula GG Gaussian-Gaussian copula GG Gaussian-Gaussian-Gaussian copula GR Gu Gaussian-Gaussian distribution GR five parameter Gamma-Normal distribution GR Gumbel-Clayton copula GR Gumbel-Gaustian copula GR Gumbel-Gaussian copula GR Gumbel-Gaussian copula GR Gumbel-Gaussian copula GR Gumbel-Gaussian copula GR Gumbel-Gumbel copula Mr comprehensive goodness-of-fit metric GR five parameter Gamma-Weibull distribution MPA percentage error of the mean of the cubes of wind speed (%) JSB four parameter Johnson SB distribution MPA sample size JSU four parameter Johnson SU distribution K four parameter Kappa distribution NP number of parameters LMOM L-moment method L-moment method Lose least squares estimation method De covariance matrix AEY annual average wind energy yield (GWh/yr) Gaussian copula capacity factor Gaussian copula f probability density function power law exponent f capacity factor Gaussian copula f probability density function height a.g.l. (m) number of hours in a year k kt case Comprehensive goodness-of-fit metric comprehensive goodness-of-fit metric mumber of goodness-of-metrics NP number of parameters LMOM L-moment method De marginal distribution wind power density (W/m²)	GLVII		$\tilde{\mathbf{y}}$	
tribution AEY annual average wind energy yield (GWh/yr) GF Gaussian-Frank copula GG Gaussian-Gaussian copula GG Gaussian-Gaussian copula GG Gaussian-Gaussian copula GG Gaussian-Gaussian copula GG Gaussian-Gaumed copula GR Gaussian-Gumbel copula GR Guassian-Gumbel distribution GR five parameter Gamma-Normal distribution GR Gu Gaussian-Gumbel distribution GR five parameter Gamma-Normal distribution GR Gu Gumbel-Clayton copula GR Gumbel-Clayton copula GR Gumbel-Frank copula GR Gumbel-Gaussian copula GR Gumbel-Gumbel copula Mr comprehensive goodness-of-fit metric GR five parameter Gamma-Weibull distribution MPA percentage error of the mean of the cubes of wind speed hr hub height range (m) JSB four parameter Johnson SB distribution MPA percentage error of the mean of the cubes of wind speed (%) JSB four parameter Johnson SB distribution MPA parameter of goodness-of-metrics K four parameter Kappa distribution NP number of goodness-of-metrics K four parameter Kappa distribution NP number of parameters LMOM L-moment method O marginal distribution LSE least squares estimation method P wind power density (W/m²)	GEVW	six parameter Generalized Extreme Value-Weibull dis-		
GF Gaussian-Frank copula GG Gaussian-Gaussian copula GG Gaussian-Gaussian copula GG Gaussian-Gaussian copula GG Gaussian-Gaussian copula GG Gaussian-Gumbel copula GG Gaussian-Gumbel copula GR Gaussian-Gumbel copula GR Gaussian-Gumbel copula GR Gaussian-Gumbel copula GR Gaussian-Gumbel distribution GR GR Gaussian-Gumbel copula GR Gumbel-Clayton copula GR Gumbel-Clayton copula GR Gumbel-Frank copula GR Gumbel-Gaussian copula GR Gumbel-Gaussian copula GR Gumbel-Gumbel copula GR Gumbel-Gumbel copula GR Great Gamma-Weibull distribution GR GR Great Gamma-Weibull distribution AMPA Descentage error of the mean of the cubes of wind speed (%) JSB Gour parameter Johnson SB distribution ANPA number of goodness-of-metrics And L-moment method And Descentage And Gaussian copula And Goodness-of-metrics And Gaussian copula And Gaussian copula And Gaussian copula And Gaussian copula And Goodness-of-fit metric Comprehensive goodness-of-fit metric (%) JSB four parameter Johnson SB distribution An number of goodness-of-metrics And L-moment method And Descentage And Gaussian copula And Goodness-of-fit metric Comprehensive			ĀĒY	
GG5 five parameter Gamma-Gamma distribution GG GG Gaussian-Gumbel copula GN five parameter Gamma-Normal distribution GU two parameter Gumbel distribution GU Gumbel-Clayton copula GUF Gumbel-Frank copula GUG Gumbel-Gaussian copula GUG Gumbel-Gumbel copula M' comprehensive goodness-of-fit metric (%) (%) (%) SSB four parameter Johnson SB distribution NPA percentage error of the mean of the cubes of wind speed (%) (%) SSB four parameter Johnson SB distribution NPA percentage error of the mean of the cubes of wind speed (%) NPA percentage error of the mean of the cubes of wind speed (%) NPA percentage error of the mean of the cubes of wind speed (%) NPA percentage error of the mean of the cubes of wind speed (%) NPA percentage error of the mean of the cubes of wind speed (%) NPA percentage error of the mean of the cubes of wind speed (%) NPA percentage error of the mean of the cubes of wind speed (%) NPA percentage error of the mean of the cubes of wind speed (%) NPA percentage error of the mean of the cubes of	GF	Gaussian-Frank copula		
GG5 five parameter Gamma-Gamma distribution GG Gaussian-Gumbel copula GN five parameter Gamma-Normal distribution GU two parameter Gumbel distribution GU Gumbel-Clayton copula GUF Gumbel-Frank copula GUF Gumbel-Gaussian copula GUF Gumbel-Gumbel copula GUF FIVE PART OF THE PROPERT			cf	
GN five parameter Gamma-Normal distribution Gu two parameter Gumbel distribution GuC Gumbel-Clayton copula GuF Gumbel-Frank copula GuG Gumbel-Gaussian copula GuG Gumbel-Gaussian copula GuG Gumbel-Gumbel copula GuG Gumbel-Gumbel copula GuF five parameter Gamma-Weibull distribution MPA percentage error of the mean of the cubes of wind speed hhr hub height range (m) JSB four parameter Johnson SB distribution MPA parameter Johnson SU distribution MPA number of goodness-of-metrics MPA number of goodness-of-metrics MPA number of parameters		•		
Gu two parameter Gumbel distribution h height a.g.l. (m) GuC Gumbel-Clayton copula ho number of hours in a year GuF Gumbel-Frank copula k kth case GuG Gumbel-Gaussian copula M goodness-of-fit metric GuGu Gumbel-Gumbel copula M' comprehensive goodness-of-fit metric GW five parameter Gamma-Weibull distribution hub height range (m) (%) JSB four parameter Johnson SB distribution n sample size JSU four parameter Johnson SU distribution nn number of goodness-of-metrics K four parameter Kappa distribution NP number of parameters LMOM L-moment method 0 marginal distribution LSE least squares estimation method P wind power density (W/m²)				
GuC Gumbel-Clayton copula ho number of hours in a year GuF Gumbel-Frank copula k kth case GuG Gumbel-Gaussian copula M goodness-of-fit metric GuGu Gumbel-Gumbel copula M/ comprehensive goodness-of-fit metric GW five parameter Gamma-Weibull distribution hub height range (m) (%) JSB four parameter Johnson SB distribution n sample size JSU four parameter Johnson SU distribution nn number of goodness-of-metrics K four parameter Kappa distribution NP number of parameters LMOM L-moment method 0 marginal distribution LSE least squares estimation method P wind power density (W/m²)				
GuF Gumbel-Frank copula k kth case GuG Gumbel-Gaussian copula M goodness-of-fit metric GuGu Gumbel-Gumbel copula M/ comprehensive goodness-of-fit metric GW five parameter Gamma-Weibull distribution hub height range (m) (%) JSB four parameter Johnson SB distribution n sample size JSU four parameter Johnson SU distribution nn number of goodness-of-metrics K four parameter Kappa distribution NP number of parameters LMOM L-moment method 0 marginal distribution LSE least squares estimation method P wind power density (W/m²)				
GuG Gumbel-Gaussian copula GuGu Gumbel-Gumbel copula GW five parameter Gamma-Weibull distribution hhr hub height range (m) JSB four parameter Johnson SB distribution K four parameter Johnson SU distribution K four parameter Kappa distribution K four parameter Kappa distribution L-moment method L-momen				
GuGu Gumbel-Gumbel copula M/ comprehensive goodness-of-fit metric GW five parameter Gamma-Weibull distribution hub height range (m) (%) JSB four parameter Johnson SB distribution n sample size JSU four parameter Johnson SU distribution nn number of goodness-of-metrics K four parameter Kappa distribution NP number of parameters LMOM L-moment method 0 marginal distribution LSE least squares estimation method P wind power density (W/m²)				
GW five parameter Gamma-Weibull distribution hub height range (m) (%) JSB four parameter Johnson SB distribution n sample size JSU four parameter Johnson SU distribution nn number of goodness-of-metrics K four parameter Kappa distribution NP number of parameters LMOM L-moment method o marginal distribution LSE least squares estimation method P wind power density (W/m²)				
hhr hub height range (m) (%) JSB four parameter Johnson SB distribution n sample size JSU four parameter Johnson SU distribution nn number of goodness-of-metrics K four parameter Kappa distribution NP number of parameters LMOM L-moment method o marginal distribution LSE least squares estimation method P wind power density (W/m²)				
JSB four parameter Johnson SB distribution n sample size JSU four parameter Johnson SU distribution nn number of goodness-of-metrics K four parameter Kappa distribution NP number of parameters LMOM L-moment method o marginal distribution LSE least squares estimation method P wind power density (W/m²)			1411 71	
JSU four parameter Johnson SU distribution nn number of goodness-of-metrics K four parameter Kappa distribution NP number of parameters LMOM L-moment method o marginal distribution LSE least squares estimation method P wind power density (W/m²)			n	
K four parameter Kappa distribution NP number of parameters LMOM L-moment method o marginal distribution LSE least squares estimation method P wind power density (W/m²)		four parameter Johnson SU distribution		
LMOM L-moment method o marginal distribution LSE least squares estimation method P wind power density (W/m²)	K			number of parameters
MLE maximum likelihood estimation method			P	wind power density (W/m²)
	MLE	maximum likelihood estimation method		

Download English Version:

https://daneshyari.com/en/article/5012416

Download Persian Version:

https://daneshyari.com/article/5012416

<u>Daneshyari.com</u>