
Energy Conversion and Management 144 (2017) 69-87

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/enconman

Comparative analysis of two hybrid energy storage systems used in a two front wheel driven electric vehicle during extreme start-up and regenerative braking operations

Khaled Itani^a, Alexandre De Bernardinis^{b,*}, Zoubir Khatir^b, Ahmad Jammal^c

^a ISAE Cnam Liban, Beirut, Lebanon ^b SATIE TEMA, IFSTTAR, Versailles, France ^c Ministry of Higher Education, Beirut, Lebanon

ARTICLE INFO

Article history: Received 26 January 2017 Received in revised form 22 March 2017 Accepted 8 April 2017

Keywords: Electric vehicle Hybrid energy storage Traction control system Regenerative braking system Ultracapacitor Flywheel energy system

ABSTRACT

This paper presents the comparative study of two hybrid energy storage systems (HESS) of a two front wheel driven electric vehicle. The primary energy source of the HESS is a Li-Ion battery, whereas the secondary energy source is either an ultracapacitor (UC) or a flywheel energy system (FES). The main role of the secondary source is to deliver/recover energy during high peak power demand, but also to increase battery lifetime, considered among the most expensive items in the electric vehicle. As a first step, a techno-economic comparative study, supported by strong literature research, is performed between the UC and the FES. The design and sizing of each element will be presented. The comparison criteria and specifications are also described. The adopted approach in this paper is based on an academic non-oriented point of view. In a second step, each of the HESS will be integrated in a more global Simulink model which includes the vehicle model, the traction control system (TCS), the regenerative braking system and the vehicle actuators. Simulation tests are performed for an extreme braking and vehicle starting-up operations. Tests are realized on two different surface road types and conditions (high and low friction roads) and for different initial system states. In order to show the most appropriate storage system regarding compactness, weight and battery constraints minimization, deep comparative analysis is provided.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Since 2004, the number of electric vehicle (EV) manufacturers has substantially increased, motivated by three majors factors which are the industry, the technology and the market [1]. From a technological point of view, the constraints related to the acceptance of electric vehicles by the public consist of a restricted autonomy of the vehicle and a lack of developed infrastructure (charging terminals, standardization of accessories, sales channels and distribution, technical support, after-sales service, spare parts...). The research and development efforts carried out on batteries, fuel cells and other alternative energy source have direct effects on the autonomy issue [2]. On the other hand, the climate changing (estimated average temperature raising of 6 °C by 2050 [3] and atmospheric concentration of greenhouse gases [4]) is another

incentive for researchers and users to elaborate and encourage the clean energy approach.

Thanks to what has been cited above, adding also the technological advances, the scarcity of oil as well as economic and strategic reasons (energy consumption, energy independence strategy), the electric vehicle industry resumes its emergence. This recovery stands on seven main pillars: (1) improvement in battery technologies [2], (2) rise of infrastructure [5,6], (3) commercial offer in evolution, (4) a further partnership between manufacturers, (5) an almost final conclusion for manufacturers stating that the electric vehicle could represent a larger market share in the future, which encouraged competition and therefore investment at all levels, (6) technology sponsored by the governments [7], and laws [8,9], (7) a more mastered technology which led the most reluctant manufacturers [10] to announce their presence in the market for e-mobility.

Energy storage elements for electric vehicles have their share portion in the technological advances. As primary energy storage, the battery has a high energy density but a low power density. The use of other energy storage elements with a high power den-

^{*} Corresponding author. *E-mail addresses*: khaled.itani@lecnam.net (K. Itani), alexandre.de-bernardinis@ ifsttar.fr (A. De Bernardinis), zoubir.khatir@ifsttar.fr (Z. Khatir), ajammal@ higher-edu.gov.lb (A. Jammal).

Nomenclature

		E _{FW}	energy capacity of the FES
Vehicle design variables and parameters		E _{lim}	energy limit achieved
m	mass of the vehicle	e_v	kinetic energy per volume
r	wheel radius	e_m	kinetic energy per unit mass
L	wheelbase of the vehicle		
(respectively l_f) distance of the rear (respectively front) wheel		Flywheel electrical motor variables and parameters	
	axle to the center of mass of the vehicle	К _w	winding factor
hg	distance from the ground to the center of	A	specific electric loading
8	mass of the vehicle	B_{gav}	specific magnetic loading
E _{ke}	kinetic energy of the vehicle	L_m^{gav}	length of the machine
V	vehicle velocity	D	diameter
	tennene teneenty	D_{in}	inner diameter
Cinematic variables		D_{out}	outer diameter
	-	N N	machine rotational speed
μ_{max}	maximal friction coefficient for a certain road	N _c	number of conductors in series per phase
λ_i	slip coefficient of the wheel <i>i</i>	E_{ν}	electromotive force
λ_{max}	slip coefficient corresponding to a maximal	-	power efficiency
	friction coefficient	η	
β_{hb-max}	ratio between friction front force and total	$\cos \varphi$	power factor
	friction force assuring maximal front/rear	P_{kW}	output power
	braking ratio	Φ_p	flux per pole
		f	frequency
Ultracapacitor elec	trical variables and parameters	р	number of poles
U_{c0}	voltage across capacitor		
U _{c0min}	ultracapacitor minimal voltage	Abbreviations	
U_{c0max}	ultracapacitor maximal voltage	ABS	Anti-Lock Braking System
I_{c0}	ultracapacitor current	CFT	Clutched Flywheel Transmission
C_0	ultracapacitor capacitance	CVT	Continuous Variable Transmission
P_0	ultracapacitor maximal power	EDLC	Electric Double Layer Capacitors
ΔE_{UC}	total energy to be recovered from an UC	ECE	Economic Commission for Europe
E _{UC}	energy capacity of the UC	ESS	Energy Storage System
LUC	chergy capacity of the oc	EV	Electric Vehicle
		FES	Flywheel Energy Storage
Flywheel energy system variables and parameters		FIA	Fédération Internationale de l'Automobile
T _{FW}	flywheel torque	FW	Flywheel
FW	moment of inertia of the flywheel	HESS	Hybrid Energy Storage System
ω	angular rotation speed	HEV	Hybrid Electric Vehicle
r _o	outer radius	ICE	Internal Combustion Engine
r _i	inner radius	ISG	Integrated Starter Generator
h	length of the flywheel cylinder	KERS	Kinetic Energy Recovery System
ho	rotor material density	SEI	
σ_r	radial stress		Solid Electrolyte Interface
σ_t	tangential stress	SOC	State of Charge
v	poisson ratio	SOE	State of Energy
Κ	shape factor of the flywheel	TCS	Traction Control System
N _{max}	maximal permissible speed	UC	Ultracapacitor
σ_{tmin}	minimal tensile strength	UN	United Nations
	energy stored in the fywheel	WHP	William Hybrid Power

sity, known as secondary energy storage, aims to complement the battery especially in regenerative braking and start up of the vehicle. This substitution will enhance the battery life as well as the dynamic performance of the vehicle. The combination of the two energy storage elements requires power electronics based converters associated with control and measurement instrumentation, known as hybrid energy storage system (HESS). The secondary energy storage could be either a flywheel or an ultracapacitor (UC).

1.1. State of the art

The flywheel and the UC have both draw researchers' attention as a secondary energy storage element. High-speed flywheels are a potential emerging technology with competitive characteristics if compared to established battery and ultracapacitor in certain vehicular applications. A general presentation of energy storage technologies can be found in [11–14]. Authors in [12] address various aspects such as historical evolution of energy storage systems, technical characteristics and interaction between smart grid and micro-grids applications. For automotive application, authors in [15] make a review on the flywheels used on vehicles. General comparisons with supercapacitors are also treated, in terms of rated power, energy capacity, specific energy, specific power, system weight and cost. The comparison data specifications had been taken from the energy storage elements manufacturers. The comparison is carried out as an apple to apple comparison, without any particular applications. Tables of flywheels research groups and manufacturers are also listed with their fields of interest.

Optimal energy management for a battery assisted by flywheel for EV is being proposed in [16,17]. The flywheel is coupled to the drive line of a continuous variable transmission (CVT). The results Download English Version:

https://daneshyari.com/en/article/5012639

Download Persian Version:

https://daneshyari.com/article/5012639

Daneshyari.com