
ELSEVIER

Contents lists available at ScienceDirect

Energy Conversion and Management

journal homepage: www.elsevier.com/locate/enconman

Modeling and optimization of dew-point evaporative coolers based on a developed GMDH-type neural network

Hamoon Jafarian, Hoseyn Sayyaadi*, Farschad Torabi

Faculty of Mechanical Engineering-Energy Division, K.N. Toosi University of Technology, P.O. Box: 19395-1999, No. 15-19, Pardis St., Mollasadra Ave., Vanak Sq., Tehran 1999 143344. Iran

ARTICLE INFO

Article history:
Received 6 December 2016
Received in revised form 11 February 2017
Accepted 5 March 2017

Keywords:
Dew-point evaporative coolers
GMDH neural network
Numerical model
M-cycle
Multi-objective optimization
NSGA-II

ABSTRACT

A precise model of a counter-flow indirect dew-point evaporative cooler was developed using the group method of data handling-type neural network while the network was trained by extracted data from a validated numerical model. After validating the model, it was employed in a multi-objective optimization problem that implements the non-dominated sorting genetic algorithm-II method. The system was optimized in diverse climatic conditions. In this regard, Yazd, Masjed-Soleiman and Ahvaz were chosen as representatives of cities with hot, hot semi-humid and hot-humid climates in Iran. In each city, optimum values of channel length, channel gap, inlet air velocity and return to intake air ratio were found so that these decision variables maximize the average coefficient of performance and minimize the specific area of the cooler, simultaneously. The results indicated that the developed model can predict the supply air temperature accurately with less than 1 °C error and due to its quick calculation process it is possible to optimize the design based on hourly climate data without any needs to very fast processors. Moreover, using the optimization, the coefficient of performance and specific area for the system designed to be used in Yazd were improved 36.3% and 30.9%, respectively. This figure at Masjed-Soleiman and Ahvaz was 16% and 7.92% improvement in the specific area at the cost of 2.63% and 2.19% reduction in the coefficient of performance, respectively. These improvements allowed the system to reach its full potential and making dew-point evaporative coolers as a suitable cooling system in diverse climatic conditions.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Nowadays, providing thermal comfort is a necessity for human life. To achieve this purpose, heating ventilation and air conditioning (HVAC) systems consume about 15% of the total electricity produced [1]. Mechanical vapor compression refrigeration is the current dominant technology in the air conditioning market which has a very high electricity consumption. To reduce the electricity usage, researchers have been searching for new and effective technologies. Evaporative coolers are one of the promising technologies in HVAC industry due to their simple structure, low capital cost and high coefficient of performance (COP). Nevertheless, the high humidity of the supplied air and low cooling potential of conventional direct evaporative cooling systems were the main disadvantages of this system that hindered the extension. However, in recent decades, very important breakthroughs were achieved in this field [2,3]. First, the problem of high-humid supply air was solved using indirect evaporative coolers (IECs) and afterward,

E-mail addresses: sayyaadi@kntu.ac.ir, hoseynsayyaadi@gmail.com (H. Sayyaadi).

the new novel thermodynamic cycle (M cycle) was proposed, which increased the cooling capacity by making it possible to reach the supply temperature to the dew-point temperature [4]. Among different suggested configurations of dew point coolers [5–7], the flat plate dew-point counter-flow IEC has shown promising results [8–10]; therefore, it was investigated further in the present paper.

A flat plate dew-point cooler is a stack of paired channels. A pair of channel consists of a supply air channel (dry channel) and exhaust-air's channel (wet channel) that are allocated side by side and separated by a thin plastic wall as shown in Fig. 1. Fig. 2 shows the two airstreams states on the psychrometric chart as they pass through channels. The ambient air enters the supply channel at state 1 and is cooled off by the counter-flow air stream into the exhaust channel. At the end of supply channel, state 2, a fraction of cooled dry air siphons off into the exhaust channel, and the rest is used for air conditioning. In the exhaust channel, water film covers the walls and evaporates into the exhaust air stream. The water evaporation cools the exhaust air that is responsible for cooling the supply air stream. Air at state 2 has a lower wet bulb temperature in comparison to state 1; therefore, it has a higher cooling potential. Hence, using the air in state 2 as an input to the wet channel

^{*} Corresponding author.

Nomenclature area (m²) channel width (m) Α w specific area (m² W⁻¹) W electric consumption (W) $A_{specific}$ half channel gap (m) coordinates (m) b *x*, *y* C cooling capacity (W) real output crowding distance for one objective Ŷ cd model estimation of output CD total crowding distance specific heat capacity (J $kg^{-1} K^{-1}$) c_p Greek symbols ĆOP coefficient of performance selection pressure D diffusivity $(m^2 s^{-1})$ δ thickness (m) DΙ distance from ideal point dynamic viscosity (Pa s) μ selection pressure criteria e_c efficiency, effectiveness η coefficients or weights g density (kg m⁻³) ρ latent heat of evaporation (J kg⁻¹) h_{fg} humidity ratio (kg kg⁻¹) ω number of inputs heat conductivity (W m⁻¹ K⁻¹) k Subscripts channel length (m) I. amb ambient mass flow rate (kg s⁻¹) m ave average MSE mean square error h base n number of inputs for each neuron constant power consumers const total number of inputs N dp dew point number of objectives Numobi exhaust channel е Num_{Ip} initial population fan number of data Num_{data} inlet i Num_{neurons} maximum possible number of neurons in each layer solution index number of solutions on Pareto front Num_{ps} k objective index objective Obj Pareto front solution index Objⁿ non-dimensionalized objective min minimum P pressure (Pa) max maximum heat flux $(W m^{-2})$ outlet 0 Ò heat rate (W) optimum opt r return to intake air ratio pl plate (wall) R coefficient of correlation supply channel S **RMSE** root of mean square error total t Τ temperature (K) wick velocity in x direction (m s⁻¹) и velocity in y direction (m s⁻¹) ν Ù volumetric flow rate (m³ s⁻¹)

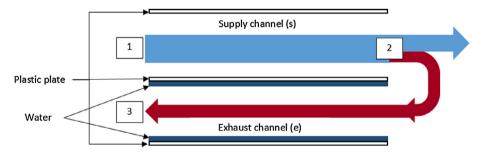


Fig. 1. Schematic top view of a channel pair in a dew-point indirect evaporative cooling system.

is the difference between a dew point evaporative cooler and a conventional IEC.

To reach the best performance of any system, it is required to optimize affecting the design and operating parameters. Therefore, optimization is a necessity for using the real potential of any system. It means that in order to have a higher potential for usage of M-cycles, those should be optimized in a sophisticated optimization approach.

To optimize the system, first, a precise model is required. In this regard, numerical models could be employed. Using a numerical model, it is possible to evaluate the performance of the system

under different circumstances. However, the accuracy of the model should be validated by experimental data; afterward, numerical model might be extended to cases that experimental data are not available. Numerical modeling of these coolers was attended by researchers. The key parameter in numerical modeling of the system is the boundary condition on the separating wall of channel pairs; many have considered the boundary condition as constant temperature and calculated constant heat and mass transfer coefficients based on classical heat and mass transfer concepts [9,11–15].

Woods et al. [16] investigated numerical modeling of a dewpoint cooler as the second stage of a DEVAP system; The separating

Download English Version:

https://daneshyari.com/en/article/5012782

Download Persian Version:

https://daneshyari.com/article/5012782

Daneshyari.com