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a b s t r a c t

The optimal components design for grid-connected photovoltaic-battery systems should be determined
with consideration of system operation. This study proposes a method to simultaneously optimize the
battery capacity and rule-based operation strategy. The investigated photovoltaic-battery system is mod-
eled using single diode photovoltaic model and Improved Shepherd battery model. Three rule-based
operation strategies—including the conventional operation strategy, the dynamic price load shifting
strategy, and the hybrid operation strategy—are designed and evaluated. The rule-based operation strate-
gies introduce different operation parameters to run the system operation. multi-objective Genetic
Algorithm is employed to optimize the decisional variables, including battery capacity and operation
parameters, towards maximizing the system’s Self Sufficiency Ratio and Net Present Value. The results
indicate that employing battery with the conventional operation strategy is not profitable, although it
increases Self Sufficiency Ratio. The dynamic price load shifting strategy has similar performance with
the conventional operation strategy because the electricity price variation is not large enough. The pro-
posed hybrid operation strategy outperforms other investigated strategies. When the battery capacity is
lower than 72 kW h, Self Sufficiency Ratio and Net Present Value increase simultaneously with the bat-
tery capacity.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The installed Photovoltaic (PV) capacity has increased rapidly in
recent years. The installed capacity has reached 177 GW at the end
of 2014 [1]. Supporting policies, including feed-in-tariff (Fit) and
net-metering, are important incentives [2]. However, due to the
intermittent nature of solar energy, the accumulated PV capacity
in the grid brings in technical issues with power quality, frequency
stability [3], and reliability. Batteries can not only smooth the PV
output and alleviate the technical challenges [4], but also increase
the economic benefits [5]. The interest in the grid-connected PV-
battery system is increasing among researchers and owners [6].

Batteries can subject to different operation strategies and bring
in different economic benefits. In the first place, batteries increase
the self-consumed electricity through storing excess PV generation
and discharging to supply consumption later [5]. The self-

consumed electricity increases the economic benefits due to the
higher economic value than exported electricity. A further battery
management strategy is to charge it when the electricity price is
low and discharge it during high price times (loading shifting)
[7]. In this case, benefits can be achieved from the difference in
electricity price. Furthermore, if the electricity user is partly
charged based on the peak power, battery can be discharged during
the peak demand (peak shaving) [8]. In this case, benefits are
achieved through reducing the user’s peak power.

During the planning stage of the grid-connected PV-battery sys-
tem, PV and battery capacities need to be decided. Meanwhile, dif-
ferent operation strategies need to be taken into account to
enhance the economic benefits. This is an optimization problem
that simultaneously takes into account PV capacity, battery capac-
ity, and operation strategy [9]. However, the literature survey indi-
cates that component sizing and operation strategy are generally
studied separately.

There are many researches addressing the component sizing
issue, especially for the off-grid systems. For example, Yang et al.
used Genetic Algorithm and obtained the PV, wind turbine and bat-
tery capacity for a stand-alone system [10]. Paliwal et al. intro-
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duced particle swarm optimization method to determine the sys-
tem configuration [11]. Xu et al. studied the possible combinations
of various PV, wind turbine and battery capacities, and obtained
the system design under either grid-connected or stand-alone con-
dition [12]. Mulder et al. studied the relationship between battery
capacity and exported electricity to the grid in a grid-connected
PV-battery system. The relationship is further used to dimension
the battery size [13]. Bortolini et al. carried out a techno-
economic analysis and determined the PV and battery capacity to
minimize the levelized cost of electricity in grid-connected PV-
battery system [14]. Zhou et al. addressed the battery sizing issue
with consideration of demand response under Time-of-Use (TOU)
tariff [15]. Mokhtari et al. determined the component size through
the optimization towards different objectives (i.e. maximizing
power export) [16]. The above studies cover the component sizing
issue. However, the issue of maximizing economic benefits with
different operation strategies is not well addressed.

The optimal operation of a given system, which is achieved by
Energy Management System (EMS), also attracts lots of research
attention [17]. A short-term power scheduling model for a grid-
connected PV-battery system was proposed by Lu et al. using a
Lagrangian relaxation-based optimization algorithm [18]. Riffon-
neau et al. used dynamic programming and obtained the 24-h
ahead power scheduling based on the accurate prediction of
weather and load [19]. Li et al. used dynamic programming to
get predictive charge control strategies for different objectives
(i.e. maximizing battery life, maximizing self-sufficiency) [20].
Marzband et al. proposed a power scheduling method based on
mixed-integer nonlinear programming and verified it with test
bench [21]. An EMS that was based on multi-layer ant colony opti-
mization was reported to decrease the energy cost by 20% com-
pared with the conventional EMS [22]. Gravitational Search
Algorithm was demonstrated as an effective tool for peak con-
sumption reduction and electricity generation cost minimization
[23]. Imperialist competition algorithmwas used in EMS to provide
multiple optimum solutions [24]. When considering demand
response of customers in the microgrid, further decrease of energy
cost (30%) was achieved [25]. The above studies obtained short-
term power scheduling based on forecasted weather and load data.

The optimal operation issue is well addressed. However, the com-
ponents in the studied systems have pre-assumed and fixed sizes.

The literature survey indicates that studies on component siz-
ing or optimal operation employ different approaches, which are
differentiated by decisional variables (component sizes/power
scheduling), input data (historical and representative data/fore-
casted data) and simulation time frame (year/day).

Studies that take into account both sizing and scheduling prob-
lems are generally scarce. Ru et al. determined the battery capacity
in grid-connected PV-battery system with consideration of load
shifting and peak shaving under TOU tariff [26]. However, the opti-
mal battery capacity is determined based on the simulation of one
typical day, indication that the seasonal variation of solar irradia-
tion and load is not considered. Gitizadeh et al. [27] extended
the research by Ru et al. Instead of one typical day, multiple typical
operation scenarios, which are obtained from Fuzzy Clustering
Method, are used in solving the optimization problem. Khalilpour
and Vassallo proposed a decision support tool to decide system
size concurrently with finding the optimal operation schedule
[28]. The support tool offers users to choose among different PV
and battery modules. The above studies merged component sizing
and optimal scheduling. They carried out long period simulation
(several days or one year) using the historical data as input, and
determined the decisional variables including component sizes
and power scheduling. However, because of the extremely large
amount of decisional variables (i.e. 18, 659, 330 in Khalilpour
and Vassallo [28]), the complex non-linear system was reduced
to linear system to facilitate the problem solving. Moreover, the
studies assumed that correct weather and load forecasting can be
ensured during the real-time operation.

In this study, a new approach of determining the battery capac-
ity and operation strategy is proposed. Instead of determining the
power scheduling, the new approach is based on rule-based oper-
ation strategy. The approach largely decreases the numbers of
decisional variables and enables carrying out optimization with
non-linear system. Specially, batteries are complex electrochemi-
cal devices. Their efficiency, power constraints and lifetime are
all influenced by the operation condition. The approach enables
to employ a more detailed model.

Nomenclature

Symbol
CO&M;y operation and maintenance cost at year y
CR;y replacement cost at year y
CAPi capacity for component i
dr discount rate
Elr;t retail electricity price at time t
Elw;t wholesale electricity price at time t
Elr;H high retail electricity price
Elr;L low retail electricity price
Inv investment cost
PB;t battery power at time t
PG;t grid power at time t
PG;peak grid peak power
PGim;t imported grid power at time t
PGex;t exported grid power at time t
PL;t load at time t
PMdisc;t maximal discharge power at time t
PMchar;t maximal charge power at time t
PNet;t net power at time t
PPV ;t PV power production at time t
PH high power limit
PL low power limit

Ry system revenue at year y
RER;y electricity reduction revenue at year y
REX;y export revenue at year y
RPS;y peak shaving revenue at year y
rO&M;i O&M Ratio for component i
SOCt State of Charge at time t
ts conventional operation start time
te conventional operation end time
tpeak the appearance time of PG;peak

UICi unit investment cost for component i
ginv inverter efficiency

Abbreviations
DOD Depth of Discharge
Elspot Electricity Spot
EMS Energy Management System
GA Genetic Algorithm
LOC Level of Confidence
NPV Net Present Value
SOC State of Charge
SSR Self Sufficiency Ratio
TOU Time-of-Use
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