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a b s t r a c t

Micro-siting is an optimal way of placing turbines inside a wind farm while considering various design
objectives and constraints. Using a well-established Jensen wake model and ISO-9613-2 noise calcula-
tion, this study performs a wind farm layout optimization based on a multi-objective trade-off between
minimization of the noise propagation and maximization of the energy generation. A novel hybrid
methodology is developed which is a combination of probabilistic real-binary coded multi-objective evo-
lutionary algorithm and a newly proposed deterministic gradient based non-dominated normalized nor-
mal constraint method. Based on the Inverted Generational Distance metric, the performance of the
proposed method is found to be better than the conventional normalized normal constraint method or
the concerned evolutionary method alone. Moreover, in contrast to the previous studies, the generated
non-dominated front is capable of providing a trade-off between various alternative energy-noise solu-
tions, along with an additional information about the corresponding turbine numbers and their optimal
location coordinates. As a result, the decision maker can choose from different competing wind turbine
layouts based on existing noise and other standard regulations.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Wind energy, one of the alternative renewable energy sources,
has significant potential to contribute to the energy crisis arising
from depleting conventional resources. Due to several advantages
of wind operation, e.g. abundant availability, low cost and green
operation, the large-scale utilization of wind power has received
a noteworthy attention from the industry, federal policies and aca-
demic research [1]. According to the Global Wind Energy Council,
the global cumulative installed wind capacity is expected to double
as much as the current capacity, by the end of 2018 [2] and can
provide 25–30% of global electricity supply. Though increasing
demand and rising wind energy utilization are extremely encour-
aging, the challenges of development of a wind farm are manifold.
The actual difficulties lie in handling different kinds of practical
constraints, such as wind farm topology, inter–turbine distance,
overall capacity factor, health of turbine, control of noise generated
by turbines, environmental impacts, and visual impacts [3], which
in turn create challenges in placing an optimum number of wind
turbines in optimal locations inside a wind farm with a target of
harnessing maximum energy [4].

Extensive research has been done in micro-siting with a focus
on maximization of energy yield with minimum investment.
Broadly, two types of approaches, representing the coordinate
search space with/without grid, are employed to formulate the
optimization problem. In grid-based approaches, the wind farm
area is partitioned using uniform grids and the optimum locations
are found out of these grid locations only. Though the efficacy of
this approach lies in the choice of ‘fineness’ of the grids, the com-
binatorial complexity of the problem increases exponentially with
increase in grid fineness. Mosetti et al. [5] have determined the
optimum layout of turbines using Genetic Algorithm (GA) while
minimizing the weighted sum of wind energy and turbines cost.
Several other GA based formulations (single and multi-objective)
with different objectives are also available in literature performing
the wind farm layout design [6]. A modified form of Binary Particle
Swarm Optimization method (BPSO) [7] is used to obtain the opti-
mum layout starting with conventional layout of turbines while
maximizing the operating income and optimizing the wind farm
parameters such as turbine sizing, and hub height. Alternative to
this combinatorial integer programming (IP) formulation,
researchers used other techniques to increase the freedom of
movement of turbines beyond the grid points. Kusiak and Song
[8] used evolutionary strategy to determine the optimum layout
of turbines while placing them freely inside a circular wind farm
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and attaining minimized wake loss and maximized energy, simul-
taneously. Eroğlu and Seçkiner extended this work using the Ant
Colony Optimization (ACO) [9] and the results provided more
power with more number of turbines inside a wind farm. In
another work, the Particle Filtering Method (PFM) [10] has also
been used to attain the above task and its efficacy has been demon-
strated. Utilizing both grid based and continuous coordinate based
approaches, two echelon wind farm layout planning model [11]
was developed. Here, Random Key Genetic Algorithm (RKGA) and
Particle Swarm Optimization (PSO) algorithms are applied sepa-
rately to each of the approaches to perform wind farm micro-
siting. In contrast, several other mathematical optimization
schemes have also been deployed to determine the optimal loca-
tions of turbines inside a wind farm with an aim of maximizing
the power. Park and Law [12] have used sequential convex pro-
gramming to optimize the existing wind turbine network in a wind
farm. However, Random search method [13] provides a promising
results in wind farm layout optimization. Chen et al. [14] per-

formedmicro-siting for regular and irregular shapes of a wind farm
using novel optimization method. Micro-siting on a complex
terrain is carried out with bionic and greedy methods, where the
latter provides a better solution in less time [15]. Wind turbine lay-
out and their sizing parameters are also optimized using iterative
approach [16]. Using both grid-based and coordinate based wind
farm designs, a novel layout plus control method is developed to
reduce the power loss [17]. Moreover, several other formulations
by controlling the different aspects of wind power generators were
developed to obtain the maximum power output while placing the
wind turbines inside a wind farm. The turbine characteristics such
as blade pitch angle and tip speed ratio are optimized to increase
the overall production of wind farm [18]. However, the optimized
tip plate configuration of a wind turbine is determined to improve
the wind turbine performance [19]. The hub heights of turbines
were utilized to increase the power output of a wind farm [20].
Moreover, Optimization strategies are developed to optimize the
hub heights in order to gain the maximum net profit [21].

Nomenclature

Acronyms
AEP annual energy production
GA genetic algorithm
IGD inverted generational distance
IP integer programming
ITD inter-turbine distance
MINLP mixed-integer non-linear programming
MSHA mine safety and health administration
nD-NNC non-dominated normalized normal constraint
NLP non-linear programming
NNC normalized normal constraint
NSGA II non-dominated sorting genetic algorithm II
OCF overall capacity factor
OSHA occupational safety & health administration
PO Pareto optimal
RBNSGA II real binary coded non-dominated sorting genetic

algorithm II
SPL sound pressure level
WFLO wind farm layout optimization

Symbols
a coefficient of sound absorption for each octave-band
dðvsol;QÞ closest Euclidian distance between ‘vsol’ and all

solutions of a selected non-dominated front
d1ðxi; yjÞ normalized Euclidian distance (w.r.t. defined ITD)

between two turbines ‘i’ and ‘j’
d2ðxyTÞ normalized OCF (w.r.t. defined OCFlim) for the obtained

turbine layout.
Duij reduced wind speed on turbine ‘j’ due to the wake

generated by upwind turbine ‘i’
Aj area of a downwind turbine ‘j’
CT coefficient of thrust
DC directivity correction for sources that are not

omni-directional
dir Euclidian distance between turbine ‘i’ and the receptor

‘r’
KW wake decay constant for Jensen model
LP sound pressure level
LW octave-band sound power emitted by the source
Tspace minimum allowable distance between two turbines
NT total number of turbines
Nupwind number of upwind turbines to downwind turbine ‘ j’

OCFlim selected limit of allowable capacity factor
Pwrðhi;uj; lkÞ power of turbine ‘k’ at location lk, at wind-speed uj

in direction hi
Rij wake radius formed by an upwind turbine ‘i’ on the

downwind turbine ‘j’
uj effective wind speed at turbine ‘j’
uo free stream wind speed
pðhi; lkÞ & pðuo; lkÞ probabilities of occurrence of wind at turbine

location lk
AEP & Noise normalized values of AEP and noise, respectively

Aij & dij overlapped area and distance between an upwind
turbine ‘i’ and the downwind turbine ‘j’, respectively

Nb & Nr number of binary and real form of variables,
respectively

r1 & r2 modified operators for AEP and noise values,
respectively

xi & yi x-axis and y-axis location coordinates for a turbine ‘i’,
respectively

Dijðxi; yjÞ) evaluation parameter for sigma1
A & k scale and shape parameters in Weibull distribution,

respectively
AEP(xyT) total energy of xyT turbine layout
Af octave-band attenuation
Cp & Mp crossover and mutation probability for RBNSGA II,

respectively
D & Rr rotor diameter and rotor radius of a turbine,

respectively
Mod Objective modified unconstrained objective function
Ngen & Npop number of generations and populations in RBNSGA

II, respectively
noise1(xyT) modified value of noise for the turbines layout ‘xyT’,

calculated by using modified operators r1 and r2
Pr rated power

Pwr(xyT) calculated power for the turbines layout xyT

Pwr1(xyT) modified value of Pwr(xyT) calculated by using
modified operators r1 and r2

SPL(xyT) noise of xyT turbine layout
Vsol selected solution from composite Pareto front
xyT xy-axis location coordinates of NT number of turbines
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