Contents lists available at ScienceDirect

Engineering Failure Analysis

journal homepage: www.elsevier.com/locate/engfailanal

Influences of tooth spalling or local breakage on time-varying mesh stiffness of helical gears

Lin Han^{a,b,*}, Houjun Qi^a

^a Tianjin Key Laboratory of High Speed Cutting & Precision Machining, Tianjin University of Technology and Education, Tianjin 300222, China
 ^b The State Key Laboratory of Mechanical Transmissions, Chongqing University, Chongqing 400044, China

ARTICLE INFO

Keywords: Helical gear Mesh stiffness Spalling Local breakage

ABSTRACT

Time-varying mesh stiffness (TVMS) provides important information about the health condition of geared systems. Tooth faults, like crack, pitting, spalling and breakage, will change the TVMS. This work aims to reveal the influences of tooth spalling and local breakage on the TVMS of helical gears. Firstly, an analytical model is developed to incorporate the faults by combining slicing method, discrete integral method and potential energy method. Then, parametric study is conducted. Finally, conclusions are arrived and the results indicate that length, width and location of these defects are very important parameters that need to be considered for calculating TVMS of helical gears. This study provides a theoretical basis for fault diagnosis of helical geared transmissions.

1. Introduction

Compared with spur gears, helical gears present lower noise and more steady performance and are widely employed in many kinds of rotating machineries to transmit motion and power. Time-varying mesh stiffness is one of the main vibration sources of the gear systems, especially under the condition with tooth fault (e.g., spalling, local breakage and root crack).

Lots of work could be found about the TVMS calculation for spur gears. Totally speaking, the methods could be classified into four categories: Finite element method (FEM), analytical method, combination of analytical method and FEM, and experimental method [1]. Among those methods, the analytical one based on potential energy principle is the most popular for its efficiency with enough calculation accuracy. Yang and Lin [2] firstly developed an analytical model to calculate TVMS of spur gear considering Hertzian, bending and axial compressive energy and the model was further improved by Tian [3] and Wu [4] by introducing the shearing energy. Later, improved analytical models were developed by researchers [5–8]. For the TVMS of gear pair with tooth faults like root crack, spalling, breakage and pitting, Chaari et al. [9] revealed influences of spalling and breakage on mesh stiffness and dynamic response of spur gear transmission by potential energy method. Ma and Chen [10] developed dynamics model of gear system with tooth crack and spalling failures by numerical simulation. With considerations of extended tooth contact, revised fillet-foundation stiffness under double-tooth engagement region and nonlinear contact stiffness, Ma et al. [11–14] conducted thorough research on calculating TVMS of spur gears with spalling or root crack. Liang et al. [15,16] conducted vibration signal modeling of a planetary gear set for tooth crack detection and developed model for calculating TVMS of spur gears with tooth pitting. Wan et al. [17] presented an improved method to calculate TVMS of spur gear with the potential energy stored in the part between base circle and root circle considered. Saxena and Parey [18] revealed the influences of spalling and friction on TVMS of spur gears.

http://dx.doi.org/10.1016/j.engfailanal.2017.04.017

Received 13 October 2016; Received in revised form 12 February 2017; Accepted 19 April 2017 Available online 20 April 2017

1350-6307/ © 2017 Elsevier Ltd. All rights reserved.

^{*} Corresponding author at: Tianjin Key Laboratory of High Speed Cutting & Precision Machining, Tianjin University of Technology and Education, Tianjin 300222, China.

E-mail address: hanlin147@163.com (L. Han).

Г

\hat{b} d dA_{x} d_{1}, d_{2} d_{h}, d_{v} dI'_{x} dK_{b}^{s} d_{oh}, d_{ov} dU_{b}^{s} E F F F_{a}, F_{b} f_{1}, f_{2} G	cross-section area tooth width distance between contact point and tooth root cross-section area of each piece distances from root to the starting and ending points of spalling horizontal and vertical coordinates of the lowest point of spalling area moment of inertia of each piece bending stiffness of each piece with spalling horizontal and vertical coordinates of the center point of spalling bending energy stored in a piece Young's modulus meshing force normal to tooth surface radial and tangential components of <i>F</i> auxiliary variables, denoting distances between 2nd, 3rd contact lines and the right side of plane of action shear modulus distance between the contact point and center line of tooth	L^* l_{AP} l_a l_s l_t M^* N	mesh stiffness of single tooth-pair with spalling mesh stiffness of contact line auxiliary variable used in calculating fillet-found tion stiffness distance between point A and P in plane of action of helical gear actual length of contact line with spalled tooth length of spalling theoretical length of contact line auxiliary variable used in calculating fillet-found tion stiffness total number of pieces of contact line N_{13} , number of pieces corresponding to contact line length L_{11},L_{12},L_{13} $= ceil(\varepsilon)$, minimum integer bigger than ε . auxiliary variable used in calculating fillet-found tion stiffness base pitch at transverse section auxiliary variable used in calculating fillet-found tion stiffness radius of base circle
d dA_x d_1, d_2 d_h, d_v dI'_x dK_b^S d_{oh}, d_{ov} dU_b^S E F F F F F_a, F_b f_1, f_2 G	distance between contact point and tooth root cross-section area of each piece distances from root to the starting and ending points of spalling horizontal and vertical coordinates of the lowest point of spalling area moment of inertia of each piece bending stiffness of each piece with spalling horizontal and vertical coordinates of the center point of spalling bending energy stored in a piece Young's modulus meshing force normal to tooth surface radial and tangential components of <i>F</i> auxiliary variables, denoting distances between 2nd, 3rd contact lines and the right side of plane of action shear modulus distance between the contact point and center line of tooth	l_{AP} l_a l_s l_t M^* N $N_{11}, N_{12},$ n P^* P_{bt} Q^* r_b	tion stiffness distance between point A and P in plane of action of helical gear actual length of contact line with spalled tooth length of spalling theoretical length of contact line auxiliary variable used in calculating fillet-found tion stiffness total number of pieces of contact line N_{13} , number of pieces corresponding to contact line length L_{11}, L_{12}, L_{13} $= ceil(\varepsilon)$, minimum integer bigger than ε . auxiliary variable used in calculating fillet-found tion stiffness base pitch at transverse section auxiliary variable used in calculating fillet-found tion stiffness radius of base circle
dA_{x} d_{1}, d_{2} d_{h}, d_{v} dl'_{x} dk_{b}^{s} d_{oh}, d_{ov} dU_{b}^{s} E F F F_{a}, F_{b} f_{1}, f_{2} G	cross-section area of each piece distances from root to the starting and ending points of spalling horizontal and vertical coordinates of the lowest point of spalling area moment of inertia of each piece bending stiffness of each piece with spalling horizontal and vertical coordinates of the center point of spalling bending energy stored in a piece Young's modulus meshing force normal to tooth surface radial and tangential components of <i>F</i> auxiliary variables, denoting distances between 2nd, 3rd contact lines and the right side of plane of action shear modulus distance between the contact point and center line of tooth	l_a l_s l_t M^* N N_{11} , N_{12} , n P^* P_b t Q^* r_b	distance between point A and P in plane of action of helical gear actual length of contact line with spalled tooth length of spalling theoretical length of contact line auxiliary variable used in calculating fillet-found tion stiffness total number of pieces of contact line N_{13} , number of pieces corresponding to contact line length L_{11}, L_{12}, L_{13} $= ceil(\varepsilon)$, minimum integer bigger than ε . auxiliary variable used in calculating fillet-found tion stiffness base pitch at transverse section auxiliary variable used in calculating fillet-found tion stiffness radius of base circle
d_1, d_2 d_h, d_v dl'_x dk_b^s d_{oh}, d_{ov} dU_b^s E F F F F F_a, F_b f_1, f_2 G	distances from root to the starting and ending points of spalling horizontal and vertical coordinates of the lowest point of spalling area moment of inertia of each piece bending stiffness of each piece with spalling horizontal and vertical coordinates of the center point of spalling bending energy stored in a piece Young's modulus meshing force normal to tooth surface radial and tangential components of F auxiliary variables, denoting distances between 2nd, 3rd contact lines and the right side of plane of action shear modulus distance between the contact point and center line of tooth	l_a l_s l_t M^* N N_{11} , N_{12} , n P^* P_b t Q^* r_b	of helical gear actual length of contact line with spalled tooth length of spalling theoretical length of contact line auxiliary variable used in calculating fillet-found tion stiffness total number of pieces of contact line N_{13} , number of pieces corresponding to contact line length L_{11}, L_{12}, L_{13} $= ceil(\varepsilon)$, minimum integer bigger than ε . auxiliary variable used in calculating fillet-found tion stiffness base pitch at transverse section auxiliary variable used in calculating fillet-found tion stiffness radius of base circle
d_h, d_v dI'_x dK_b^s d_{oh}, d_{ov} dU_b^s E F F F F F_a, F_b f_1, f_2 G	points of spalling horizontal and vertical coordinates of the lowest point of spalling area moment of inertia of each piece bending stiffness of each piece with spalling horizontal and vertical coordinates of the center point of spalling bending energy stored in a piece Young's modulus meshing force normal to tooth surface radial and tangential components of <i>F</i> auxiliary variables, denoting distances between 2nd, 3rd contact lines and the right side of plane of action shear modulus distance between the contact point and center line of tooth	l_a l_s l_t M^* N N_{11} , N_{12} , n P^* P_b t Q^* r_b	actual length of contact line with spalled tooth length of spalling theoretical length of contact line auxiliary variable used in calculating fillet-found tion stiffness total number of pieces of contact line N_{13} , number of pieces corresponding to contact line length L_{11}, L_{12}, L_{13} $= ceil(\varepsilon)$, minimum integer bigger than ε . auxiliary variable used in calculating fillet-found tion stiffness base pitch at transverse section auxiliary variable used in calculating fillet-found tion stiffness radius of base circle
d_h, d_v dI'_x dK_b^S d_{oh}, d_{ov} dU_b^S E F F F F F_a, F_b f_1, f_2 G	horizontal and vertical coordinates of the lowest point of spalling area moment of inertia of each piece bending stiffness of each piece with spalling horizontal and vertical coordinates of the center point of spalling bending energy stored in a piece Young's modulus meshing force normal to tooth surface radial and tangential components of <i>F</i> auxiliary variables, denoting distances between 2nd, 3rd contact lines and the right side of plane of action shear modulus distance between the contact point and center line of tooth	l_{s} l_{t} M^{*} N $N_{11}, N_{12},$ n P^{*} P_{bt} Q^{*} r_{b}	length of spalling theoretical length of contact line auxiliary variable used in calculating fillet-found tion stiffness total number of pieces of contact line N_{13} , number of pieces corresponding to contact line length L_{11}, L_{12}, L_{13} $= ceil(\varepsilon)$, minimum integer bigger than ε . auxiliary variable used in calculating fillet-found tion stiffness base pitch at transverse section auxiliary variable used in calculating fillet-found tion stiffness radius of base circle
$dI'_{\mathbf{x}}$ dk_b^s d_{oh}, d_{ov} dU_b^s E F F F F F_{a}, F_b f_1, f_2 G	point of spalling area moment of inertia of each piece bending stiffness of each piece with spalling horizontal and vertical coordinates of the center point of spalling bending energy stored in a piece Young's modulus meshing force normal to tooth surface radial and tangential components of <i>F</i> auxiliary variables, denoting distances between 2nd, 3rd contact lines and the right side of plane of action shear modulus distance between the contact point and center line of tooth	$l_t \\ M^* \\ N \\ N_{11}, N_{12}, \\ n \\ P^* \\ P_{bt} \\ Q^* \\ r_b$	theoretical length of contact line auxiliary variable used in calculating fillet-found tion stiffness total number of pieces of contact line N_{13} , number of pieces corresponding to contact line length L_{11}, L_{12}, L_{13} = $ceil(\varepsilon)$, minimum integer bigger than ε . auxiliary variable used in calculating fillet-found tion stiffness base pitch at transverse section auxiliary variable used in calculating fillet-found tion stiffness radius of base circle
$dI'_{\mathbf{x}}$ dk_b^s d_{oh}, d_{ov} dU_b^s E F F F F_{a}, F_b f_1, f_2 G	area moment of inertia of each piece bending stiffness of each piece with spalling horizontal and vertical coordinates of the center point of spalling bending energy stored in a piece Young's modulus meshing force normal to tooth surface radial and tangential components of <i>F</i> auxiliary variables, denoting distances between 2nd, 3rd contact lines and the right side of plane of action shear modulus distance between the contact point and center line of tooth	M^* N $N_{11}, N_{12},$ n P^* Q^* $r_{\rm b}$	auxiliary variable used in calculating fillet-found tion stiffness total number of pieces of contact line N_{13} , number of pieces corresponding to contact line length L_{11}, L_{12}, L_{13} = $ceil(\varepsilon)$, minimum integer bigger than ε . auxiliary variable used in calculating fillet-found tion stiffness base pitch at transverse section auxiliary variable used in calculating fillet-found tion stiffness radius of base circle
dk_b^s d_{oh}, d_{ov} dU_b^s E F F F_a, F_b f_1, f_2 G	bending stiffness of each piece with spalling horizontal and vertical coordinates of the center point of spalling bending energy stored in a piece Young's modulus meshing force normal to tooth surface radial and tangential components of <i>F</i> auxiliary variables, denoting distances between 2nd, 3rd contact lines and the right side of plane of action shear modulus distance between the contact point and center line of tooth	$egin{array}{c} N \ N_{11}, N_{12}, \ n \ P^* \ Q^* \ r_{ m b} \end{array}$	tion stiffness total number of pieces of contact line N_{13} , number of pieces corresponding to contact line length L_{11}, L_{12}, L_{13} = $ceil(\varepsilon)$, minimum integer bigger than ε . auxiliary variable used in calculating fillet-found tion stiffness base pitch at transverse section auxiliary variable used in calculating fillet-found tion stiffness radius of base circle
d_{oh}, d_{ov} $dU_b{}^s$ E F F F_{as} F_b f_1, f_2 G	horizontal and vertical coordinates of the center point of spalling bending energy stored in a piece Young's modulus meshing force normal to tooth surface radial and tangential components of <i>F</i> auxiliary variables, denoting distances between 2nd, 3rd contact lines and the right side of plane of action shear modulus distance between the contact point and center line of tooth	$N_{11}, N_{12},$ n P^* Q^* $r_{\rm b}$	total number of pieces of contact line N_{13} , number of pieces corresponding to contact line length L_{11}, L_{12}, L_{13} $= ceil(\varepsilon)$, minimum integer bigger than ε . auxiliary variable used in calculating fillet-found tion stiffness base pitch at transverse section auxiliary variable used in calculating fillet-found tion stiffness radius of base circle
dU_b^s E F F F_{a} , F_b f_1 , f_2 G	point of spalling bending energy stored in a piece Young's modulus meshing force normal to tooth surface radial and tangential components of <i>F</i> auxiliary variables, denoting distances between 2nd, 3rd contact lines and the right side of plane of action shear modulus distance between the contact point and center line of tooth	$N_{11}, N_{12},$ n P^* Q^* $r_{\rm b}$	N_{13} , number of pieces corresponding to contact line length L_{11}, L_{12}, L_{13} = $ceil(\varepsilon)$, minimum integer bigger than ε . auxiliary variable used in calculating fillet-found tion stiffness base pitch at transverse section auxiliary variable used in calculating fillet-found tion stiffness radius of base circle
dU _b ^s E F F _a , F _b f ₁ , f ₂ G	bending energy stored in a piece Young's modulus meshing force normal to tooth surface radial and tangential components of <i>F</i> auxiliary variables, denoting distances between 2nd, 3rd contact lines and the right side of plane of action shear modulus distance between the contact point and center line of tooth	$n \ P^*$ $p_{ m bt} \ Q^*$ $r_{ m b}$	line length L_{11},L_{12},L_{13} = $ceil(\varepsilon)$, minimum integer bigger than ε . auxiliary variable used in calculating fillet-found tion stiffness base pitch at transverse section auxiliary variable used in calculating fillet-found tion stiffness radius of base circle
E F F _a , F _b f ₁ , f ₂ G	Young's modulus meshing force normal to tooth surface radial and tangential components of <i>F</i> auxiliary variables, denoting distances between 2nd, 3rd contact lines and the right side of plane of action shear modulus distance between the contact point and center line of tooth	$n \ P^*$ $p_{ m bt} \ Q^*$ $r_{ m b}$	line length L_{11},L_{12},L_{13} = $ceil(\varepsilon)$, minimum integer bigger than ε . auxiliary variable used in calculating fillet-found tion stiffness base pitch at transverse section auxiliary variable used in calculating fillet-found tion stiffness radius of base circle
E F F _a , F _b f ₁ , f ₂ G	Young's modulus meshing force normal to tooth surface radial and tangential components of <i>F</i> auxiliary variables, denoting distances between 2nd, 3rd contact lines and the right side of plane of action shear modulus distance between the contact point and center line of tooth	P^* $p_{ m bt}$ Q^* $r_{ m b}$	$= ceil(\varepsilon)$, minimum integer bigger than ε . auxiliary variable used in calculating fillet-found tion stiffness base pitch at transverse section auxiliary variable used in calculating fillet-found tion stiffness radius of base circle
F_a, F_b f_1, f_2 G	radial and tangential components of <i>F</i> auxiliary variables, denoting distances between 2nd, 3rd contact lines and the right side of plane of action shear modulus distance between the contact point and center line of tooth	$p_{ m bt} Q^* r_{ m b}$	tion stiffness base pitch at transverse section auxiliary variable used in calculating fillet-found tion stiffness radius of base circle
F _a , F _b f ₁ , f ₂ G	radial and tangential components of <i>F</i> auxiliary variables, denoting distances between 2nd, 3rd contact lines and the right side of plane of action shear modulus distance between the contact point and center line of tooth	Q* r _b	tion stiffness base pitch at transverse section auxiliary variable used in calculating fillet-found tion stiffness radius of base circle
f ₁ , f ₂ G	2nd, 3rd contact lines and the right side of plane of action shear modulus distance between the contact point and center line of tooth	Q* r _b	auxiliary variable used in calculating fillet-found tion stiffness radius of base circle
G	2nd, 3rd contact lines and the right side of plane of action shear modulus distance between the contact point and center line of tooth	Q* r _b	auxiliary variable used in calculating fillet-found tion stiffness radius of base circle
G	of action shear modulus distance between the contact point and center line of tooth	r _b	tion stiffness radius of base circle
	distance between the contact point and center line of tooth		
	of tooth		
'n	of tooth	,	auxiliary variable used in calculating fillet-found
			tion stiffness
h _b	height of local breakage	t_1, t_2, t_3	auxiliary variables used in calculating actu
	distance between point on tooth curve, bottom		length of contact line
	edge of spalling corresponding to the section	t _b	thickness of local breakage
	where the distance from tooth root is <i>x</i> and the	t _{be} , t _{bs.}	ending and starting time instants that contact li
	central line of tooth		passes through breakage
h _s	height of spalling	t _{total}	total meshing time of single tooth-pair
I _x	area moment of inertia of the section where the	U	Total potential energy stored in a pair of gears
	distance from the root is x	U_{a1}, U_{a2}	axial compressive energies stored in a tooth fro
i′	i^{th} piece of the spalling portion of a tooth		pinion and gear
k	mesh stiffness of helical gear	U_{b1}, U_{b2}	bending energies stored in a tooth from pinion and
k _a , k _a ^s	axial compressive stiffness of a tooth without and		gear
	with spalling	U_{s1}, U_{s2}	shearing energies stored in a tooth from pinion a
k _{ai}	i = 1,2, axial compressive stiffness, subscript i		gear
	denotes driving gear and driven gear	u_f	auxiliary variable used in calculating fillet-found
k _{a1,i}	i = 1,,n, axial compressive stiffness, subscript i		tion stiffness
	denotes ith tooth-pair	v_t	traveling velocity of meshing point along tran
k_b, k_b^s	bending stiffness of a tooth without and with		verse section
	spalling	w_b	width of local breakage
k _{bi}	i = 1,2, bending stiffness, subscript <i>i</i> denotes		
	driving gear and driven gear	Greek syn	nbols
k _{b1,i}	i = 1,,n, bending stiffness, subscript <i>i</i> denotes		
	<i>i</i> th tooth-pair	α_m	acting pressure angle of gear tooth for calculati
k _f	fillet-foundation stiffness of a tooth		fillet-foundation stiffness
	i = 1,2, fillet-foundation stiffness, subscript i de-	α_{s1}, α_{s2}	pressure angles corresponding to spalling area
	notes driving gear and driven gear	α_1	acting pressure angle of gear tooth
	i = 1,,n, fillet-foundation stiffness, subscript i	α'_1	auxiliary variable
	denotes <i>i</i> th tooth-pair	α_2	half of base tooth angle
k _h	Hertzian contact stiffness of a tooth-pair	β_b	helix angle at base cylinder
	mesh stiffness of <i>i</i> th piece with and without	ε	total contact ratio
	spalling defect,	$\varepsilon_{\alpha}, \varepsilon_{\beta}$	transverse and axial contact ratio
	shearing stiffness of a tooth without and with	ν	Poisson's ratio
	spalling	$ heta_b$	auxiliary variable, representing the angle betwee
	i = 1,2, shearing stiffness, subscript <i>i</i> denotes		the hypotenuse and the transverse section of too
	driving gear and driven gear	ω	angular speed of pinion
	i = 1,,n, shearing stiffness, subscript <i>i</i> denotes	Δy	width of a piece

Download English Version:

https://daneshyari.com/en/article/5013537

Download Persian Version:

https://daneshyari.com/article/5013537

Daneshyari.com