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a b s t r a c t

In this manuscript, mixed-mode fracture is studied. Conversely to previous plasticity based
formulations, the purpose of this work is to derive discrete damage models to simulate the
evolution of fracture under both normal and shear tractions.
First, an energy based model is used. Next, deformation-based models are adopted, both

with isotropic and non-isotropic damage evolution laws. Damage is usually considered as a
deformation driven process. However, fracture criteria, such as crack initiation and crack
evolution, are typically defined in the stress or traction space. This is why a new, more
refined model is also introduced, in which damage evolution is traction-based. Several spe-
cial cases are studied, such as: homotetic damage evolution, isotropic damage evolution
and a general mixed-mode evolution law. Compressive tractions are also dealt with,
namely under Mode-II fracture. In all cases, as a direct consequence of the damage
approach, both the total/secant constitutive relation and the corresponding incremental/-
tangent stiffness are derived. Some elementary numerical results are obtained and
discussed.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

In this work, mixed-mode fracture is studied within the framework of the damage mechanics theory. Consequently, the
total secant formulation can be explicitly derived, which allows for the use of non-iterative methods, such as the ones pre-
sented in Rots [35], Rots and Belletti [36], Invernizzi et al. [17], Costa et al. [12,11]. These methods are built upon the concept
of damage evolution.

Continuum damage mechanics has been used since Kachanov introduced the effective stress concept [19]. However, it was
only in later works that continuum damage mechanics was applied to quasi-brittle materials such as concrete, namely in
Kachanov [20], Krajinovic and Fonseka [22], Chaboche [10], Mazars [26], Krajinovic [21], Costanzo [13], and later in Simo
and Ju [40], Mazars and Pijaudier-Cabot [27], Pijaudier-Cabot and Bažant [33], Bažant and Pijaudier-Cabot [4], Mazars and
Pijaudier-Cabot [28], Peerlings et al. [32], Faria et al. [14], Simone et al. [41], Fernandez and Ayala [15], Sancho et al. [39].

The effective stress is associated with the hypothesis of strain equivalence [23]: ‘‘the strain associated with a damaged
state under the applied stress is equivalent to the strain associated with its undamaged state under the effective stress”.
Thus, for a given strain, the actual stress is smaller than the effective stress due to the degradation of the material properties
which, in quasi-brittle materials, is due to initiation, coalescence and growth of micro cracking. In a simple tensile test, the
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reduction of the undamaged material cross sectional area, giving rise to the definition of the average stress over a represen-
tative element volume, can be evaluated by means of a scalar variable d, called the damage variable, such that:

r ¼ ð1� dÞ�r; ð1Þ

where �r is the effective stress and d ¼ 0 for undamaged material and d ¼ 1 for a fully damaged material. In a more general
framework, the relation in Eq. (1) can be extended to [40]:

r ¼ M : �r; ð2Þ
where M is a fourth-order damage tensor and ‘‘:” denotes a double contraction product. In case of non-dependence of the
direction of loading we get an isotropic damage setting corresponding to (1), in which M ¼ ð1� dÞI; I being the identity
tensor.

For quasi-brittle materials it is usually assumed that crack initiation occurs according to Rankine-type failure criterion,
i.e., when the maximum principal stress reaches the tensile strength of the material f t . Furthermore, it is also assumed that

List of symbols

r stress component
r stress tensor
d scalar damage variable
d second order damage tensor
dn normal damage variable component
ds shear damage variable component
I identity tensor
W Helmholtz free energy density
Y thermodynamic force conjugate to the internal damage variable d
Del fourth order elastic constitutive tensor
e strain tensor
w displacement jump vector
wn normal component of the jump displacement vector
ws shear component of the jump displacement vector
t traction vector acting at the discontinuity
tn normal component of the traction vector
tn normal traction corresponding to the maximum shear strength
ts shear component of the traction vector
s0 elastic free energy per unit area at the onset of localisation
Del
Cd

second order elastic constitutive tensor corresponding to discontinuity Cd

Del
nn normal diagonal component of tensor Del

Cd

Del
ss shear diagonal component of tensor Del

Cd

f loading surface defined in the traction space
f 1; f 2 limit surfaces defined in the traction space
f t0 initial tensile strength
f t tensile strength
c0 initial cohesion: shear strength under the absence of normal traction
c cohesion
G0 generalised fracture energy
GF fracture energy
GII
F fracture energy under mode-II fracture

j monotonic increasing function of the displacement jump components
b scalar function which enables transition between mode-I and modeII fracture
g loading function defined in the displacement jump space
gn normal damage evolution law
gs shear damage evolution law
/ internal friction angle
nn wn=jn

ns jwsj=js

G c=f t
q js=jn
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