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a b s t r a c t

This manuscript contains the continuation of the work presented in ‘‘On the modeling of
mixed-mode discrete fracture: part I – damage models”. After the introduction of several
damage models within the scope of a discrete crack approach, dilatancy is included herein
as an additional compliance of both deformation-based and traction based models. Due to
the nature of the damage formulation, the total-secant stiffness is explicitly derived. As a
consequence, this feature allows for the use of this model with non-iterative numerical
methods, which are built upon the assumption of damage evolution. Several elementary
results are presented together with the simulation of some experimental tests.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

In part I of this manuscript, energy-based, deformation-based and traction-based localised damage models were derived
within the scope of a discrete crack approach. In this manuscript, the possibility of modelling dilatancy is added to both
deformation-based and traction-based damage models.

In all cases, the total/secant relationship is explicitly derived, which allows for the use of non-iterative methods, such as
the ones presented in Rots [22]; Rots and Belletti [23]; Invernizzi et al. [14]; Costa et al. [5,6].

First, both the deformation-based model and the traction-based model presented in Alfaiate and Sluys [3] are briefly
reviewed. Next, dilatancy is included in both models. Due to the limitations inherent to the deformation-based models, some
tests are performed with the traction-based model only. Besides some elementary examples, experimental tests from Paulay
and Lobber [21] as well as from Hassanzadeh [13,11,12] are also simulated. A comparative analysis is performed and some
refinements are made to the original model with the purpose of better approximating the experimental results.

2. Damage models

In this Section, a review of both the deformation-based and the stress-based discrete damage models presented in
Alfaiate and Sluys [3], and Alfaiate [1] are performed.
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2.1. Deformation-based model

In a general, non-isotropic, discrete damage framework we can write:

tn ¼ ð1� dnÞDel
nnwn

ts ¼ ð1� dsÞDel
ssws;

ð1Þ

where tn is the traction normal to the discontinuity, ts is the traction tangent to the discontinuity, wn is the normal jump
displacement, ws is the sliding jump displacement, dn is the damage under normal traction, ds is the damage variable under

shear traction and Del
nn;D

el
ss are the normal and shear stiffness coefficients, respectively. Assume the following definition of the

non-isotropic damage variables under exponential softening:

dþ
n ¼ ds ðtn P 0Þ mixed-mode fracture;

d�
n ¼ 0 ðtn < 0Þ mode-II;

dsðj;bÞ ¼ 1� j0
j exp � f t0

GF
bðj� j0Þ

h i
:

8>><
>>: ð2Þ

Nomenclature

r stress component
r stress tensor
d scalar damage variable
d second order damage tensor
dn normal damage variable component
ds shear damage variable component
I identity tensor
w displacement jump vector
wn normal component of the jump displacement vector
ws shear component of the jump displacement vector
t traction vector acting at the discontinuity
tn normal component of the traction vector
tn normal traction corresponding to the maximum shear strength
ts shear component of the traction vector

Del
Cd

second order elastic constitutive tensor corresponding to discontinuity Cd

Cel
Cd

elastic compliance constitutive tensor/matrix corresponding to discontinuity Cd

Del
nn normal diagonal component of tensor Del

Cd

Del
ss shear diagonal component of tensor Del

Cd

f ; f 1; f 2; f 3
limit surfaces defined in the traction space

f t0 initial tensile strength
f t tensile strength
f c compressive strength
c0 initial cohesion: shear strength under the absence of normal traction
c cohesion
GF fracture energy
GII
F fracture energy under mode-II fracture

j monotonic increasing function of the displacement jump components
b scalar function which enables transition between mode-I and modeII fracture
g loading function defined in the displacement jump space
gn normal damage evolution law
gs shear damage evolution law
/ internal friction angle
w dilatancy angle
nn wn=jn

ns jwsj=js

G c=f t
q js=jn
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