Contents lists available at ScienceDirect

Engineering Fracture Mechanics

journal homepage: www.elsevier.com/locate/engfracmech

On the modeling of mixed-mode discrete fracture: Part II – Inclusion of dilatancy

J. Alfaiate^{a,*}, L.J. Sluys^b

^a CERIS, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
^b Delft University of Technology, Dept. of Civil Eng. and Geosciences, P.O. Box 5048, 2600 GA Delft, The Netherlands

ARTICLE INFO

Article history: Received 20 April 2017 Received in revised form 12 July 2017 Accepted 14 July 2017 Available online 25 July 2017

Keywords: Mixed-mode fracture Dilatancy Discrete damage

ABSTRACT

This manuscript contains the continuation of the work presented in "On the modeling of mixed-mode discrete fracture: part I – damage models". After the introduction of several damage models within the scope of a discrete crack approach, dilatancy is included herein as an additional compliance of both deformation-based and traction based models. Due to the nature of the damage formulation, the total-secant stiffness is explicitly derived. As a consequence, this feature allows for the use of this model with non-iterative numerical methods, which are built upon the assumption of damage evolution. Several elementary results are presented together with the simulation of some experimental tests.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

In part I of this manuscript, energy-based, deformation-based and traction-based localised damage models were derived within the scope of a discrete crack approach. In this manuscript, the possibility of modelling dilatancy is added to both deformation-based and traction-based damage models.

In all cases, the total/secant relationship is explicitly derived, which allows for the use of non-iterative methods, such as the ones presented in Rots [22]; Rots and Belletti [23]; Invernizzi et al. [14]; Costa et al. [5,6].

First, both the deformation-based model and the traction-based model presented in Alfaiate and Sluys [3] are briefly reviewed. Next, dilatancy is included in both models. Due to the limitations inherent to the deformation-based models, some tests are performed with the traction-based model only. Besides some elementary examples, experimental tests from Paulay and Lobber [21] as well as from Hassanzadeh [13,11,12] are also simulated. A comparative analysis is performed and some refinements are made to the original model with the purpose of better approximating the experimental results.

2. Damage models

In this Section, a review of both the deformation-based and the stress-based discrete damage models presented in Alfaiate and Sluys [3], and Alfaiate [1] are performed.

* Corresponding author.

http://dx.doi.org/10.1016/j.engfracmech.2017.07.020 0013-7944/© 2017 Elsevier Ltd. All rights reserved.

E-mail address: jorge.alfaiate@tecnico.ulisboa.pt (J. Alfaiate).

Nomenclature	
σ	stress component
σ	stress tensor
d	scalar damage variable
d	second order damage tensor
d_n	normal damage variable component
d_s	shear damage variable component
Ι	identity tensor
w	displacement jump vector
w_n	normal component of the jump displacement vector
Ws	shear component of the jump displacement vector
t	traction vector acting at the discontinuity
t _n	normal component of the traction vector
t _n	normal traction corresponding to the maximum shear strength
L_S	snear component of the traction vector
$\mathbf{D}_{\Gamma_d}^{el}$	second order elastic constitutive tensor corresponding to discontinuity Γ_d
$\mathbf{C}_{\Gamma_d}^{el}$	elastic compliance constitutive tensor/matrix corresponding to discontinuity Γ_d
D_{nn}^{el}	normal diagonal component of tensor $\mathbf{D}_{\Gamma_d}^{el}$
D_{ss}^{el}	shear diagonal component of tensor $\mathbf{D}_{\Gamma_d}^{el}$
f, f_1, f_2, f_3	
£	initia surfaces defined in the traction space
$\int_{f} t_0$	initial tensile strength
J _t f	compressive strength
J _c	initial cohering shear strength under the absence of normal traction
с ₀	cohesion
GF	fracture energy
$G_{\rm F}^{\rm II}$	fracture energy under mode-II fracture
ĸ	monotonic increasing function of the displacement jump components
β	scalar function which enables transition between mode-I and modell fracture
g	loading function defined in the displacement jump space
g_n	normal damage evolution law
g_{s}	shear damage evolution law
ϕ	Internal friction angle
ψ_{Σ}	dilatancy angle
ςn ε	W_{Π}/K_{Π}
$G^{\varsigma_{s}}$	$ \mathbf{v}_{S} /\kappa_{S}$
0	\mathcal{L}_{Jt} $\mathcal{L}_{c}/\mathcal{L}_{n}$
r	- yr - n

2.1. Deformation-based model

In a general, non-isotropic, discrete damage framework we can write:

$$t_n = (1 - d_n) D_{nn}^{el} w_n t_s = (1 - d_s) D_{ss}^{el} w_s,$$
(1)

where t_n is the traction normal to the discontinuity, t_s is the traction tangent to the discontinuity, w_n is the normal jump displacement, w_s is the sliding jump displacement, d_n is the damage under normal traction, d_s is the damage variable under shear traction and D_{nn}^{el} , D_{ss}^{el} are the normal and shear stiffness coefficients, respectively. Assume the following definition of the non-isotropic damage variables under exponential softening:

$$\begin{cases} d_n^+ = d_s & (t_n \ge 0) \text{ mixed-mode fracture,} \\ d_n^- = 0 & (t_n < 0) \text{ mode-II,} \\ d_s(\kappa, \beta) = 1 - \frac{\kappa_0}{\kappa} \exp\left[-\frac{f_{x0}}{G_F}\beta(\kappa - \kappa_0)\right]. \end{cases}$$
(2)

Download English Version:

https://daneshyari.com/en/article/5013807

Download Persian Version:

https://daneshyari.com/article/5013807

Daneshyari.com