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a b s t r a c t

The study of the propagation of multiple cracks is essential to modeling and predicting
structural integrity. The interaction between two cracks depends on a number of factors
such as the domain geometry, the relative crack sizes and the separation between the
two crack tips. In this paper, we study the interaction between two dynamically propagat-
ing cracks. We use the phase field method to track the crack paths, since this method can
handle complex crack behavior such as crack branching, without any ad hoc criteria for
crack evolution. The results from our dynamic simulations indicate that, unlike crack inter-
action under quasi-static or fatigue loading, the presence of another crack does not accel-
erate crack propagation when dynamic loads are applied. However, some similarities in the
crack topologies are observed for both quasi-static and dynamic loading.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

1.1. Motivation

Fracture is a primary cause of catastrophic failure in structures. Since analytical solutions for crack propagation do not
exist except for a few special cases, accurate numerical modeling of fracture is essential. Broadly speaking, numerical mod-
eling of fracture can be done using three classes of methods: 1. Discrete modeling (cohesive zone modeling, extended finite
element methods, element deletion methods), 2. Continuum damage description, and 3. Phase field methods.

Cohesive zone modeling either requires prior knowledge of the crack path (see, [6,5,3]) or it requires insertion of cohesive
zone in between all element edges as done in Xu and Needleman [45], which increases the computational cost. Also, since
the crack can propagate only along finite element boundaries, different shapes of triangular elements might lead to different
crack paths for the same boundary conditions, as seen in Xu and Needleman [45]. The extended finite element method
(XFEM) method requires that the current and predicted paths be checked at every step (see [35]). Also since discontinuities
are injected on the basis of a failure criterion, the use of level sets tends to favor propagation of a single crack, limiting its use
for cases involving crack branching [39]. The element deletion method does not predict any crack branching in simulations
carried out by Song et al. [39]. In continuum damage models, a change of the character of the governing partial differential
equations occurs locally, beyond a certain level of accumulated damage or plastic strains [11]. Thus, many existing methods
are ill-suited to modeling the dynamic behavior of cracks.
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1.2. Phase field models

Phase field models can capture complex crack behavior without any ad hoc criteria for crack evolution [9] and are thus
effective in capturing interactions among dynamically propagating cracks. In these approaches, the fracture surface is
approximated by a phase field [10]. A continuous scalar-valued phase field c is introduced in the domain to indicate whether
the material is in the fractured phase (c ¼ 0) or the unfractured phase (c ¼ 1). The phase field is allowed to take on interme-
diate values (0 < c < 1) signifying a smearing of the crack over a small region characterized by a length scale parameter l0.
The phase field determines the stiffness of the material; it reduces the strength of the material in areas where c < 1. An equa-
tion for the evolution of this phase field is derived using the Euler-Lagrange equations for an approximation of the Lagran-
gian for the fracture problem. This depends on the history of the strain energy of the domain. This couples the momentum
and the phase field evolution equations, and the equilibrium state at any given time is determined by solving this coupled
system of equations.

We now review the evolution of various phase field models briefly. Aranson et al. [2] put forward a phase field model in
which the displacement field obeys the elasto-dynamic equations together with a damping term. They introduced an order
parameter q which is used to describe the damage evolution. In this model, the elasticity modulus is assumed to be propor-
tional to order parameter such that E ¼ E0q. Karma et al. [26] (KKL model) use a scalar order parameter / that describes the
state of the material in Lagrangian material coordinates; / ¼ 0 for broken state and / ¼ 1 for unbroken state. The evolution
of the crack is derived variationally from a free energy functional. However, the crack motion is a reversible process in this
model. Henry [21] use a model in which crack growth is irreversible. The samemodel is applied to nonlinear elastic materials
in Kuhn and Müller [27]. In Hakim and Karma [19] and Hakim and Karma [20], the KKL phase field model from Karma et al.
[26] is used to derive the principle of local symmetry and it provides generalized conditions for crack path prediction. Wang
et al. [42], Jin et al. [23], Wang et al. [41] use this method to model the interaction between dislocations with free surfaces,
voids and cracks. With the research in the past decade, phase field methods have been used to successfully model cracks at
low speeds [40]. These models can describe quantitatively, crack kinking and oscillatory instabilities with biaxial loading and
with thermal fracture.

The phase field method overcomes numerous complexities of discrete fracture models. It does not require numerical
tracking of discontinuities or re-meshing of the domain as the crack propagates. This allows for efficient modeling of branch-
ing and merging of cracks, which in turn allows us to study the interaction between multiple cracks as demonstrated in this
work. This approach can also efficiently model fracture in three-dimensional problems [10,43] and can represent complex
fracture surfaces simply through the phase field variable.

The phase field approach suffers from some drawbacks. Firstly, the parameter l0 is both a material parameter that deter-
mines the critical stress for crack nucleation, as well as a numerical parameter that determines the degree of approximation
of the crack. Consequently, the crack path can change significantly with the value of l0 (see [1]). If l0 is considered to be a
numerical parameter, then a smaller value leads to a more accurate solution. However, a small value of l0 also requires a finer
discretization of the domain, which in turn increases the computational cost. Another computational consideration in using
the phase field method is the cost of solving for an additional field quantity, namely the phase field itself. What is also not
clear is how the parameter l0 can be determined for a given material from experimental data and what types of experiments
are needed for this purpose.

The method used in this paper is based on the work by Bourdin et al. [12], who implement the variational formulation for
quasistatic crack growth proposed by Francfort and Marigo [16]. The method uses a two-field functional, the first field being
displacements and the secondbeing a scalar phasefield. Bourdin et al. [13]modify this formulation formodelingdynamic crack
propagation. Thework ofMiehe et al. [34] proposes a thermodynamically consistent phase field formulation, inwhich energy-
release-driven fracture occurs only in tension. Furthermodifications include the introduction of a local history field that drives
the evolution of the crack path, making the formulation more robust; see Miehe et al. [31]. Borden [9] extends the phase field
formulation to ductile fracture and also derives a higher-order phase field approximation for improved accuracy. Notable
recent extensions and improvements of the phase field method include modeling fracture in rubbery polymers [33],
thermo-elastic-plastic solids [30] at large strains, crack evolution in piezoelectric ceramics [44], and pressurized fractures [43].

1.3. Crack interaction

The presence of multiple cracks is significant because of the potential for interaction among the cracks. This can have
catastrophic consequences like in the case of Aloha Airlines Flight 243, which experienced an explosive decompression fol-
lowing a structural failure of the fuselage in 1998. The National Transportation Safety Board (NTSB) reported the cause of the
damage to be failure of a fuselage lap joint from multi-site cracking of the skin adjacent to rivet holes along the lap joint [7].

In general, the interaction between two cracks depends on the domain geometry, the relative crack lengths and the sep-
aration between the two crack tips. Kamaya and Totsuka [25] show the variation in crack interaction as the distance between
the two crack tips varies. Their experiments and subsequent simulations show that in most cases, approaching cracks tend to
accelerate due to the interaction except in the presence of a relatively large crack, in which case crack growth might be
arrested due to the stress shielding effect. The propagation of the larger crack leads to a reduction in stiffness and a release
of residual stresses, due to which the stress intensity at the crack-tip of the smaller crack decreases, see Hutchinson [22]).
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