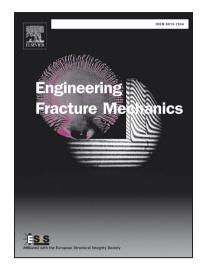
Accepted Manuscript

Investigation on the strain capacity of girth welds of X80 seamless pipes with defects

A. Bastola, J. Wang, H. Shitamoto, A. Mirzaee-sisan, M. Hamada, N. Hisamune

PII: S0013-7944(16)30639-7


DOI: http://dx.doi.org/10.1016/j.engfracmech.2017.06.010

Reference: EFM 5586

To appear in: Engineering Fracture Mechanics

Received Date: 23 November 2016

Revised Date: 11 June 2017 Accepted Date: 12 June 2017

Please cite this article as: Bastola, A., Wang, J., Shitamoto, H., Mirzaee-sisan, A., Hamada, M., Hisamune, N., Investigation on the strain capacity of girth welds of X80 seamless pipes with defects, *Engineering Fracture Mechanics* (2017), doi: http://dx.doi.org/10.1016/j.engfracmech.2017.06.010

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Submitted Journal: Engineering Fracture Mechanics

Authors: A. BASTOLA^a, J. WANG^a, H. SHITAMOTO^b, A. MIRZAEE-SISAN^a, M. HAMADA^c and N. HISAMUNE^c

Investigation on the strain capacity of girth welds of X80 seamless pipes with defects

1. Abstract

An experimental and numerical study has been carried out on the strain capacity of girth-welded X80 pipes subject to displacement-controlled conditions. The focus of this research is fracture limit state. This paper contains details of small-scale and full-scale experiments on X80 line pipe specimen containing girth welds and different initial defect dimensions in order to understand their fracture behaviour. The effect of internal pressure on strain capacity is also investigated through full-scale bending tests. Extensive accompanying Finite Element Analysis has been carried out with a focus on weld overmatch combined with Heat Affected Zone. The analysis results are compared with experimental results and the current Engineering Critical Assessment procedures.

Keywords: X80 steels; J-integral; R-curve tests; Crack growth; Pipelines

2. Nomenclature

API	American Petroleum Institute
BM	Base Metal
CMOD	Crack Mouth Opening Displacement
CTOD	Crack Tip Opening Displacement
DIC	Digital Image Correlation
ECA	Engineering Critical Assessment
EDM	Electronic Discharge Machining
HAZ	Heat Affected Zone
ID	Internal Diameter
NSSMC	Nippon Steel and Sumitomo Metal Corporation
OD	Outer Diameter
SENB	Single Edge Notch Bend
SENT	Single Edge Notch Tension
SMYS	Specified Minimum Yield Strength
WCL	Weld Centre Line
WM	Weld Metal
WPS	Welding Procedure Specification
Y/T	Yield to Tensile Ratio

Average Nominal Strain

Crack extension

3. Introduction

 ϵ_{ave}

Δa

Internal and external pressures applied to an offshore pipeline can be extremely high as governed by wellhead and hydrostatic pressures. Hillenbard et al. /1/ showed that for pipes with

Page **1** of **27**

^aDNV GL, 4th Floor Vivo Building, 30 Stamford Street, London, SE1 9LQ, United Kingdom ^bNippon Steel & Sumitomo Metal Corporation, 1-8 Fuso-Cho, Amagasaki, Hyogo, Japan

^cNippon Steel & Sumitomo Metal Corporation, 1850 Minato, Wakayama City, Wakayama, Japan

Download English Version:

https://daneshyari.com/en/article/5013859

Download Persian Version:

https://daneshyari.com/article/5013859

<u>Daneshyari.com</u>