Contents lists available at ScienceDirect

Engineering Fracture Mechanics

journal homepage: www.elsevier.com/locate/engfracmech

Facet formation at the crack front under combined crack opening and anti-plane shear loading

A. Eberlein, H.A. Richard *, G. Kullmer

Institute of Applied Mechanics, University of Paderborn, Pohlweg 47-49, 33098 Paderborn, Germany

ARTICLE INFO

Article history: Received 8 September 2016 Received in revised form 25 November 2016 Accepted 9 December 2016 Available online 18 December 2016

Keywords: 3D-mixed-mode Facets Fatigue Fracture CTSR-specimen

ABSTRACT

This article addresses the topic of crack initiation and crack growth behaviour under combined cyclic mode I- and cyclic mode III-loading. Such loading combinations especially lead to a crack, which unscrews out of its initial orientation and segments into many single cracks respectively facets. This characteristic of facet formation depicts the crucial difference to crack propagation under pure mode I-loading, pure in-plane shearing (mode II) as well as 2D-mixed-mode-loadings. Since investigations about these stepped fractured surfaces are scarce till today, their characterisation remains to be researched deeper. Consequently, a facet quantification is performed by some characteristic dimensions, which will be presented and discussed within this paper. After the description of experiments for facet creation, a quantification of each facet will be analysed concerning characteristic dimensions by the crack profile near the initial position. Finally, the findings will be illustrated and discussed in this contribution.

© 2016 Published by Elsevier Ltd.

1. Introduction

Event till today, an unsolved and long existing research matter in fracture mechanics is the characterisation of crack initiation and growth behaviour under combined mode I- and mode III-loading. This loading combination specially leads the initial crack to twist out of its previous direction and separate into multiple daughter cracks, in other words facets. Afterwards these facets form a stepped fractured surface in the crack propagation process. Moreover, Pons and Karma [1] observed an increase in space between the facets during the crack growth event, which finally leads to a coarsening and enlargement of each facet. Furthermore, Knauss [2] and Sommer [3] concluded from their experimental researches, that the facet formation directly happens perpendicular to the axle of the maximum principal stress with a twisting angle ψ_0 of around 45° with respect to the initial crack. The definition of the crack twisting angle ψ_0 is illustrated in Fig. 1.

Building on from the researches and findings of Knauss [2], Sommer [3] as well as from the findings of Pons and Karma [1], a quantification of facets will be presented and discussed within this article. The purpose is to get new insights and facts about facet creation and initiation behaviour under combined mode I- and mode III-loading. Finally, an analysis of a possible application of the hypothesis developed by Lin et al. on the experimental results is carried out. This hypothesis is able to describe the crack initiation under combined mode III-loadings.

ELSEVIER

^{*} Corresponding author. Email address: richard@fam.upb.de (H.A. Richard) *E-mail address*: richard@fam.upb.de (H.A. Richard).

Nomenclature		
AFM	All Fracture Mode	
CTSR	Compact Tension Shear Rotation	
f_{as}	ascending facets	
$f_{\rm fa}$	falling facets	
Α	elongation at break	
В	bridging region	
Ε	Young's modulus	
F	force	
ΔF	cyclic load range	
K _{IC}	fracture toughness for mode I-loading	
$\Delta K_{\rm I}, \Delta K_{\rm II}$	¹ cyclic stress intensity factor for mode I- and mode III-loading	
$\Delta K_{\rm IC}$	critical cyclic stress intensity factor	
$\Delta K_{l,th}$	threshold value for mode I-loading	
ΔK_V	cyclic comparative stress intensity factor	
N D	cycles	
K D	stress ratio	
к _m р	0.2% viold strongth	
к _{р0,2}	crack length	
u a.	initial crack length	
u ₀	facet distance	
d	projected facet length	
e	width of the bridging regions B	
da/dN	crack growth rate	
1	specimen length	
t	specimen thickness	
w	specimen width	
α	loading angle	
β	loading angle	
v	Poisson's ratio	
$ au_z$	shear stress in z-direction	
ψ_0	crack twisting angle	
$\psi_{ extsf{F}}$	facet angle	

Mode III

Fig. 1. Definition of the crack twisting angle ψ_0 .

2. Crack growth experiments under combined cyclic mode I- and cyclic mode III-loading

In order to create facets, experiments under mixed-mode I + III-loading were performed using the CTSR-specimen and the appropriate loading device [4,5]. The next section gives a detailed explanation of the material that is investigated, the CTSR-specimen and the experimental procedure of the mixed-mode tests performed.

Download English Version:

https://daneshyari.com/en/article/5014057

Download Persian Version:

https://daneshyari.com/article/5014057

Daneshyari.com