Accepted Manuscript

Effects of aluminum surface treatments on the interfacial fracture toughness of carbon-fiber aluminum laminates

Afshin Zamani Zakaria, Karim shelesh-nezhad, T.N. Chakherlou, Ali Olad

PII: S0013-7944(16)30410-6

DOI: http://dx.doi.org/10.1016/j.engfracmech.2017.01.004

Reference: EFM 5368

To appear in: Engineering Fracture Mechanics

Received Date: 22 September 2016 Revised Date: 30 November 2016 Accepted Date: 6 January 2017

Please cite this article as: Zamani Zakaria, A., shelesh-nezhad, K., Chakherlou, T.N., Olad, A., Effects of aluminum surface treatments on the interfacial fracture toughness of carbon-fiber aluminum laminates, *Engineering Fracture Mechanics* (2017), doi: http://dx.doi.org/10.1016/j.engfracmech.2017.01.004

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

CCEPTED MANUSCRIPT

Effects of Aluminum Surface Treatments on the Interfacial Fracture

Toughness of Carbon-Fiber Aluminum Laminates

Afshin Zamani Zakaria ^{a*}, Karim shelesh-nezhad ^a, T.N. Chakherlou ^a, Ali Olad ^b

^a Department of Mechanical Engineering, University of Tabriz, Tabriz, Iran

^b Department of Applied Chemistry, University of Tabriz, Tabriz, Iran

Abstract

The influence of aluminum surface treatment on the interfacial delamination performance of

carbon/epoxy composite and aluminum substrate was studied. Aluminum substrates were

treated chemically with acid, alkaline and both individually. AFM images suggest high

roughness for acid treatment and porous oxide layer for alkaline treatment, respectively. The

plate theory was employed in order to obtain the energy release rate of asymmetric double

cantilever beam (ADCB). The results indicated improvements of interfacial fracture

toughness for acid then alkaline treatment of aluminum substrates. Finite element study of

crack growth proved more reliability of energy release rates obtained by plate theory analysis

rather than compliance calibration method, for ADCB specimen.

Keywords

Fiber metal laminate; Cohesive zone modelling; Delamination; Interface fracture; Fiber

bridging.

* Corresponding author. Tel: +989146427936

E-mail: afshin.zamani89@gmail.com (A.Z. Zakaria)

1

Download English Version:

https://daneshyari.com/en/article/5014101

Download Persian Version:

https://daneshyari.com/article/5014101

Daneshyari.com