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a b s t r a c t

In this paper, the Discontinuous Cell Method (DCM) is formulated with the objective of
simulating cohesive fracture propagation and fragmentation in homogeneous solids with-
out issues relevant to excessive mesh deformation typical of available Finite Element for-
mulations. DCM discretizes solids by using the Delaunay triangulation and its associated
Voronoi tessellation giving rise to a system of discrete cells interacting through shared
facets. For each Voronoi cell, the displacement field is approximated on the basis of rigid
body kinematics, which is used to compute a strain vector at the centroid of the Voronoi
facets. Such strain vector is demonstrated to be the projection of the strain tensor at that
location. At the same point stress tractions are computed through vectorial constitutive
equations derived on the basis of classical continuum tensorial theories. Results of analysis
of a cantilever beam are used to perform convergence studies and comparison with classi-
cal finite element formulations in the elastic regime. Furthermore, cohesive fracture and
fragmentation of homogeneous solids are studied under quasi-static and dynamic loading
conditions. The mesh dependency problem, typically encountered upon adopting softening
constitutive equations, is tackled through the crack band approach. This study demon-
strates the capabilities of DCM by solving multiple benchmark problems relevant to cohe-
sive crack propagation. The simulations show that DCM can handle effectively a wide range
of problems from the simulation of a single propagating fracture to crack branching and
fragmentation.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

A quantitative investigation of cohesive fracture propagation necessitates an accurate description of various fracture phe-
nomena including: crack initiation; propagation along complex three-dimensional paths; interaction and coalescence of dis-
tributed multi-cracks into localized continuous cracks; and interaction of fractured/unfractured material. The classical Finite
Element (FE) method, although it has been used with some success to address some of these aspects [1], is inherently inca-
pable of modeling the displacement discontinuities associated with fracture. To address this issue, advanced computational
technologies have been developed in the recent past. First, the embedded discontinuity methods (EDMs) were proposed to
handle displacement discontinuity within finite elements. In these methods the crack is represented by a narrow band of
high strain, which is embedded in the element and can be arbitrarily aligned. Many different EDM formulations can be found
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in the literature and a comprehensive comparative study of these formulations appears in Ref. [2]. The most common draw-
backs of EDM formulations are stress locking (spurious stress transfer between the crack surfaces), inconsistency between
the stress acting on the crack surface and the stress in the adjacent material bulk, and mesh sensitivity (crack path depending
upon mesh alignment and refinement).

A method that does not experience stress locking and reduces mesh sensitivity is the extended finite element method (X-
FEM) [3]. X-FEM, first introduced by Belytschko and Black [4], exploits the partition of unity property of FE shape functions.
This property enables discontinuous terms to be incorporated locally in the displacement field without the need of topology
changes in the initial uncracked mesh. Moës et al. [5] enhanced the initial work of Belytschko et al. [4] by including a dis-
continuous enrichment function to represent the displacement jump across the crack faces away from the crack tip. X-FEM
has been successfully applied to a wide variety of problems. Dolbow et al. [6] applied XFEM to the simulation of growing
discontinuity in Mindlin-Reissner plates by employing appropriate asymptotic crack-tip enrichment functions. Belytschko
and coworkers [7] modeled evolution of arbitrary discontinuities in classical finite elements, in which discontinuity branch-
ing and intersection modeling are handled by the virtue of adding proper terms to the related finite element displacement
shape functions. Furthermore, they studied crack initiation and propagation under dynamic loading condition and used a
criterion based on the loss of hyperbolicity of the underlying continuum problem [8]. Zi et al. [9] extended X-FEM to the sim-
ulation of cohesive crack propagation. More recently, new orthotropic enrichment functions have been utilized to model
interlaminar cracks in layered composites [10]. The main drawbacks of X-FEM are that the implementation into existing
FE codes is not straightforward, the insertion of additional degrees of freedoms is required on-the-fly to describe the discon-
tinuous enrichment, and complex quadrature routines are necessary to integrate discontinuous integrands.

Another approach widely used for the simulation of cohesive fracture is based on the adoption of cohesive zero-thickness
finite elements located at the interface between the usual finite elements that discretize the body of interest [11–14]. This
method, even if its implementation is relatively simple, tends to be computationally intensive because of the large number of
nodes that are needed to allow fracturing at each element interface. Furthermore, in the elastic phase the zero-thickness
finite elements require the definition of an artificial penalty stiffness to ensure inter-element compatibility. This stiffness
usually deteriorates the accuracy and rate of convergence of the numerical solution and it may cause numerical instability.
To avoid this problem, algorithms have been proposed in the literature [15] for the dynamic insertion of cohesive fractures
into FE meshes. The dynamic insertion works reasonably well in high speed dynamic applications but is not adequate for
quasi-static applications and leads to inaccurate stress calculations along the crack path.

An attractive alternative to the aforementioned approaches is the adoption of discrete models (particle and lattice mod-
els), which replace the continuum a priori by a system of rigid particles that interact by means of linear/nonlinear springs or
by a grid of beam-type elements. These models were first developed to describe the behavior of particulate materials [16]
and to solve elastic problems in the pre-computers era [17]. Later, they have been adapted to simulate fracture and failure
of quasi-brittle materials in both two [18] and three dimensional problems [19–22]. In this class of models, it is worth men-
tioning the rigid-body-spring model developed by Bolander and collaborators, which dicretizes the material domain using
Voronoi diagrams with random geometry, interconnected by zero-size springs, to simulate cohesive fracture in two and
three dimensional problems [23–26]. Various other discrete models, in the form of either lattice or particle models, have
been quite successful recently in simulating concrete materials [27–34].

Discrete models can realistically simulate fracture propagation and fragmentation without suffering from the aforemen-
tioned typical drawbacks of other computational technologies. The effectiveness and the robustness of the method are
ensured by the fact that: (a) their kinematics naturally handle displacement discontinuities; (b) the crack opening at a cer-
tain point depends upon the displacements of only two nodes of the mesh; (c) the constitutive law for the fracturing behav-
ior is vectorial; (d) remeshing of the material domain or inclusion of additional degrees of freedom during the fracture
propagation process is not necessary. Despite these advantages the general adoption of these methods to simulate fracture
propagation in continuous media has been quite limited because of various drawbacks in the uncracked phase, including: (1)
the stiffness of the springs is defined through a heuristic (trial-and-error) characterization; (2) various elastic phenomena,
e.g. Poisson’s effect, cannot be reproduced exactly; (3) the convergence of the numerical scheme to the continuum solution
cannot be proved; (4) amalgamation with classical tensorial constitutive laws is not possible; and (5) spurious numerical
heterogeneity of the response (not related to the internal structure of the material) is inherently associated with these meth-
ods if simply used as discretization techniques for continuum problems.

The Discontinuous Cell Method (DCM) presented in this paper provides a framework unifying discrete models and con-
tinuum based methods. The Delaunay triangulation is employed to discretize the solid domain into triangular elements, the
Voronoi tessellation is then used to build a set of discrete polyhedral cells whose kinematics is described through rigid body
motion typical of discrete models. Tonti [35] presented a somewhat similar approach to discretize the material domain and
to compute the finite element nodal forces using dual cell geometries. Furthermore, the DCM formulation is similar to that of
the discontinuous Galerkin method which has primarily been applied in the past to the solution of fluid dynamics problems,
but has also been extended to the study of elasticity [36]. Recently, discontinuous Galerkin approaches have also been used
for the study of fracture mechanics [37] and cohesive fracture propagation [38]. The DCM formulation can be considered as a
discontinuous Galerkin approach which utilizes piecewise constant shape functions. Another interesting feature of DCM is
that the formulation includes rotational degrees of freedom. Researchers have attempted to introduce rotational degrees of
freedom to classical finite elements by considering special form of displacement functions along each element edge to
improve their performance in bending problems [39,40]. This strategy leads often to zero energy deformation modes and
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