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Abstract

This paper explores the utility of a discrete singular convolution algorithm for solving certain mechanical problems. Benchmark
mechanical systems, including plate vibrations and incompressible flows, are employed to illustrate the robustness and to test accuracy
of the present algorithm. Numerical results indicate that the present approach is very accurate, efficient and reliable for solving the
aforementioned problems. © 2001 Elsevier Science B.V. All rights reserved.

1. Introduction

Since many practical problems in science and engineering are either extremely difficult or impossible to
solve by conventional analytical methods, numerical simulations play a more and more important role in
handling these problems. The advent of high-performance computers has given tremendous impetus to all
numerical methods for solving science and engineering problems. Although there has been a great deal of
achievement in developing accurate, efficient and robust computational methods, finding numerical solu-
tions for partial differential equations (PDEs) is still a challenge owing to the presence of possible singu-
larities and/or homoclinic manifolds that induce sharp transitions in the solutions. The presence of these
phenomena can be extremely sensitive to numerical algorithms and can easily lead to numerically induced
spatial and/or temporal chaos [1]. The conventional approaches to these problems may be classified as
either global methods [2-6] or local methods [7-16]. Global methods are highly localized in their spectral
representations, but are unlocalized in the coordinate representation. By contrast, local methods have high
spatial localization, but are delocalized in their spectral representations. Moreover, the use of global
methods is usually restricted to structured grids, whereas, local methods can be implemented to block-
structured grids and even unstructured grids. In general, global methods are much more accurate than local
methods, while the major advantages of local methods are their flexibility in handling complex geometries
and boundary conditions. In ordinary applications, it is relatively safe and efficient to use either a global
method or a local one for numerically solving an ordinary differential equation or a partial differential
equation. However, when a differential equation has singularities and/or homoclinic orbits, neither the
global methods nor the local methods can be applied without numerical instabilities. The global methods
lose their accuracy near the singularities due to local high frequency components. The local methods have
to be implemented in an adaptive manner, which greatly limits their accuracy and requires extremely small
(spatial and/or temporal) mesh sizes. In many situations, the rate of convergence of a numerical method
simply cannot match the divergent rate of the problem under study near a singularity. It is desirable to have
a method that has both spectral and spatial localization, and is thus locally smooth and asymptotically
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decaying in both spectral and coordinate spaces. Particularly, such a method has the feature that combines
global methods’ accuracy with local methods’ flexibility.

The discrete singular convolution (DSC) algorithm [17] was proposed as a potential approach for nu-
merical realization of Hilbert transform, Abel transform, Radon transform, and delta transform. These
transforms are essential to many practical applications, such as computational electromagnetics, computed
tomography, molecular potential surface generation and dynamic simulation. The DSC algorithm has been
tested for its applications to stochastic process analysis [17], nanoscale pattern formation of complex
systems [18], homoclinic orbit of the Sine—-Gordon singularity [19], and quantum eigenvalue problem of the
Schrodinger equation [20]. The underlying mathematical structure for the DSC algorithm is the theory of
distributions [21].

The purpose of this paper is to explore the utility and test the reliability of the DSC algorithm for
mechanical applications. To this end, we consider two types of problems, plate vibrations and incom-
pressible flows. This paper is organized as follows: The DSC algorithm is reviewed in Section 2. Some
relevant parts of the algorithm are described in a greater detail than the original paper. Vibration analysis
by the DSC algorithm is presented in Section 3. Eigenfunctions and eigenvalues of a rectangular plate and a
circular plate are studied. Section 4 is devoted to fluid flow applications. We consider two test examples, the
Taylor problem and a double shear layer flow, to illustrate the accuracy and robustness of the DSC ap-
proach for flow simulations. This paper ends with a conclusion.

2. Theory and algorithm

Singular convolutions are essential to many science and engineering problems, such as electromagnetics,
Hilbert transform, Abel and Radon transforms. DSC is a general approach for the numerical realization of
singular convolutions. By appropriate construction or approximation of a singular kernel, the discrete
singular convolution can be an extremely efficient, accurate and reliable algorithm for practical applications
[17].

It is most convenient to discuss singular convolution in the context of distributions. We denote 7" a
distribution and #(¢) an element of the space of test functions. A singular convolution can be expressed as

Fm:/’npﬁm@w. (1)
Here T(¢ — x) is a singular kernel. Depending on the form of the kernel 7, the singular convolution is the
central issue for many science and engineering problems. For example, singular kernels of the Hilbert type
have a general form of

TW=". (1>0) )
Here, kernels T(x) = 1/x%,(0 < a < 1) define the Abel transform which is closely connected with a gen-
eralization of the tautochrone problem. Kernel 7(x) = 1 /x commonly occurs in theory of linear response,
signal processing, theory of analytic functions, and the Hilbert transform. Its three-dimensional version is
important to the theory of electromagnetics. 7(x) = 1/x” is the kernel used in tomography. Other inter-
esting examples are singular kernels of the delta type

T(x)=0"(x), (n=0,1,2,...). (3)

Here, kernel T(x)=0(x) is important for interpolation of surfaces and curves, and
T(x) = 0" (x), (n=1,2,...) are essential for numerically solving differential equations. However, a com-
mon feature of these kernels is that they are singular, i.e., they cannot be directly digitized in computers. In
this regard, the singular convolution, (1), is of little numerical merit. To avoid the difficulty of using sin-
gular expressions directly in computers, sequences of approximations (7,) of the distribution 7" can be
constructed
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