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a b s t r a c t

In this work we assess the extent to which a beam model is suitable for the finite-element
analysis of composite structures undergoing a large-displacement delamination process.
We lay down the necessary theory needed for the geometrically non-linear analysis using
Reissner’s beam theory for the layers to be applied to layered structures involving dual-
mode damage-type bi-linear constitutive law for the interconnections, run a number of
representative examples and compare the results to those obtained using a geometrically
linear analysis. The formulation is given in a general form where the number of layers and
nodes of the beam finite elements is arbitrary. To solve numerical problems, the equilib-
rium of which is necessarily more complex and demanding to satisfy than in the geomet-
rically linear case, the standard cylindrical arc-length procedure is used only when there is
no damage at the interconnection. When damage at the interconnection occurs, the stan-
dard arc-length method has been modified so that in each load step the converged solution
is required to result in an increase in the total damage of the system. It is concluded that
the geometrically linear formulations can be used with satisfactory accuracy only in lim-
ited number of cases where displacements and rotations remain small.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Structures composed of multiple layers can be found in many areas of engineering as well as in nature. The most preva-
lent failure mechanism of such structures is delamination in which the connection between the layers is being progressively
damaged due to cracking and is eventually completely lost. Obviously, this failure mechanism is very complex for a variety of
reasons.

To start with, it exhibits overall structural softening upon reaching a particular strength of the interconnection [1] and in
order to assess this strength it becomes necessary to invoke the fundamental energy principles from the theory of fracture
mechanics [2]. The actual softening may be described exponentially, as in the linear fracture mechanics (see e.g. [3]) or as a
linear or multi-linear curve, often used in numerical analyses. The global manifestation of post-critical softening may often
become apparent in considerably larger overall displacements compared to those in the pre-critical range necessitating a
geometrically non-linear structural analysis.

In addition, instead of considering the delamination stress at the crack tip as infinite, which follows from the principles of
linear fracture mechanics [4], in real practical problems it becomes necessary to recognise that the fracturing process is gov-
erned by a finite stress distribution over a small region around the crack tip, the so-called ‘‘process zone” in Barenblatt’s
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cohesive zone models (CZM) [5]. The cohesive zone models enable the stresses to ’straddle’ a narrow crack and describe a
variety of physical phenomena rather well, from generation and localisation of a principal crack [6–8] to aggregate interlock-
ing in concrete structures [9].

Also, a crack between two layers may occur for different reasons leading to the so-called Mode I, II or III openings (normal
to the crack surface, or tangential to it due to slippage or tearing) [1]. Obviously, these may not be considered separately
since even a limited damage in a particular mode always comes as a consequence of some underlying physical
re-arrangement of particle bonds on a sufficiently small scale which necessarily reduces also the strengths in the other
modes. It thus becomes necessary to define a certain scalar measure of overall damage (see e.g. [10]), which involves con-
tribution from all possible modes and governs the phenomenon of damage-induced strength reduction in all the modes.

When modelling engineering problems we are naturally led by the demands of (i) accuracy and (ii) computational effi-
cience, which need to be met to within a prescribed measure and in some sense optimised. For the class of problems anal-
ysed here, in our previous work [11] it has been shown that using beam finite elements instead of 2D solids for planar
geometrically linear delamination gives results of comparable accuracy using significantly less degrees of freedom. Such ele-
ments do not appear to be as wide-spread in this type of analysis as the solids, and it is thus argued that they should be con-
sidered as a valid alternative in a variety of situations, including mixed-mode delamination. The efficiency of multi-layer
beam finite elements in comparison with commonly used 2D solids has been shown also in authors’ previous work [12]
where the connection between the layers was assumed to be absolutely rigid (see also [13,14]).

In this work we attempt to assess the extent to which the beammodel and, more generally the geometrically linear set-up
itself, are applicable to the analysis of the composite structures undergoing a delamination process. Not unexpectedly, such
structures are usually designed to take advantage of the particular properties of the materials forming the composite without
being damaged in the operational state. However, if we want to trace the post-critical equilibrium path after the process of
delamination has initiated, possibly all the way up to full rupture, we have to recognise that the ratio between the displace-
ment and the loading magnitudes may increase considerably. There also exist such delamination phenomena, e.g. peeling, in
which the displacements are of the order of magnitude of the geometry of the problem analysed.

In such situations, obviously, geometrically linear analysis may not return the results representative of the real behaviour
of the problem analysed. Given the complexity of the delamination process, it is not always possible to tell in advance if the
geometrically non-linear effects may not in fact become considerable even for deformation magnitudes which we may be
tempted to intuitively classify as ‘small’.

In this work we will lay down the necessary theory needed for the geometrically non-linear analysis using Reissner’s
beam theory for the layers to be applied to layered structures involving dual-mode damage-type bi-linear constitutive
law for the interconnections. In order to assess the need for the geometrically non-linear analysis presented, we will run
a number of representative examples and compare the results to those obtained using a geometrically linear analysis.

2. Problem description

Geometry of deformation of a multi-layer beam is described in [11] and here we reproduce it for reference. An initially
straight multi-layer beam composed of n layers and n� 1 interconnections is considered. An arbitrary interconnection a is
placed between layers i and iþ 1.

Material co-ordinate system of each layer is defined by an orthonormal triad of vectors E1;i;E2;i;E3;i, with axes X1;i;X2;i;X3;i

(see Fig. 1). The axes X1;i are parallel with the layer’s edges and mutually (E1 ¼ E1;i and X1 ¼ X1;i) coincide with the reference
axes of each layer. The position of a reference axis over the layer’s height ai 2 h0;hiimay be chosen arbitrarily, where hi is the
layer’s height. However, in [11] it was shown that the position of the reference axis may influence the numerical results. The
cross-sections of all layers have a common vertical principal axis X2 defined by a base vector E2 ¼ E2;i (a condition for a pla-
nar deformation). Note that, according to Fig. 1, the co-ordinate X2;i is different for each layer i. Axes X3;i are mutually parallel
(X3 ¼ X3;i and E3 ¼ E3;i), but they do not necessarily coincide with the horizontal principal axes of the layers’ cross-sections.
The first and the second moment of area of the layer’s cross-section with respect to axis X3;i are defined as

Fig. 1. Position of a segment of a multi-layer beam with interconnection in the material co-ordinate system.
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