Contents lists available at ScienceDirect

Engineering Fracture Mechanics

journal homepage: www.elsevier.com/locate/engfracmech

Effects of loading type, temperature and oxidation on mechanical hysteresis behavior of carbon fiber-reinforced ceramic-matrix composites

Li Longbiao

College of Civil Aviation, Nanjing University of Aeronautics and Astronautics, No. 29 Yudao St., Nanjing 210016, PR China

ARTICLE INFO

Article history: Received 22 August 2016 Received in revised form 17 October 2016 Accepted 20 October 2016 Available online 25 October 2016

Keywords: Ceramic-matrix composites (CMCs) Hysteresis loops Matrix cracking Interface debonding

ABSTRACT

The effects of loading type, i.e., cyclic loading/unloading tensile, cumulative tensile fatigue loading, and tension-tension fatigue loading, temperature and oxidation on the mechanical hysteresis behavior of carbon fiber-reinforced ceramic-matrix composites (CMCs) have been investigated. Based on the damage mechanism of fiber sliding relative to the matrix in the interface debonded region, the stress-strain relationships upon unloading/reloading when the interface partially and completely debonded have been determined considering fibers fracture. The effects of material properties, damage mode and cycle number on the interface slip and hysteresis loops have been analyzed. The mechanical hysteresis behavior of different loading types of C/SiC at room temperature and 800 °C in air have been predicted.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Ceramic materials possess high strength and modulus at elevated temperatures. But their use as structural components is severely limited because of their brittleness. Continuous fiber-reinforced ceramic-matrix composites (CMCs), by incorporating fibers in ceramic matrices to improve the toughness, however, not only exploit their attractive high-temperature strength but also reduce the propensity for catastrophic failure. Carbon fiber-reinforced silicon carbide ceramic-matrix composites (C/SiC CMCs) are one of the most promising candidates for many high temperature applications, particularly as aerospace and aircraft thermostructural components [1].

When CMCs are subjected to cyclic loading, hysteresis loops develop due to frictional sliding along any interface debonded region [2,3]. Many researchers have performed investigations on the hysteresis behavior of CMCs. Kotil et al. [4] investigated the effect of interface debonding on hysteresis loops. Pryce and Smith [5] investigated the hysteresis loops when the interface partially debonded based on the assumption of purely frictional load transfer between fibers and the matrix. Keith and Kedward [6] investigated the hysteresis loops when the interface completely debonded. Solti et al. [7] investigated the hysteresis loops when the interface was chemically bonded and partially debonded by adopting the maximum interface shear strength criterion to determine the interface debonded length. Ahn and Curtin [8] investigated the effect of matrix stochastic cracking on the hysteresis loops of unidirectional CMCs using the Coulomb friction law to describe the interface shear stress in the interface debonded region. The cyclic loading/unloading tensile hysteresis loops of unidirectional C/SiC composite at room and elevated temperatures have been predicted for different peak stresses. Li [11] investigated the synergistic effect of arbitrary loading sequence and interface wear on the fatigue hysteresis loops of

L. Longbiao/Engineering Fracture Mechanics 169 (2017) 336-353

Nomenclature	
σ	stress
r _f	fiber radius
Ŕ	matrix radius
l.	matrix crack spacing
la	interface debonded length
, V _f	fiber volume fraction
V _m	matrix volume fraction
Ef	fiber elastic modulus
Em	matrix elastic modulus
Ec	composite elastic modulus
ho	shear-lag model parameter
τ_i	interface shear stress
ζd	interface debonded energy
Т	stress carried by intact fibers
$\langle T_{\rm b} \rangle$	load carried by broken fibers
P(T)	fiber failure volume fraction
$\sigma_{\rm c}$	fiber characteristic strength
$\sigma_{ m o}(N)$	fiber strength at the Nth cycle
<i>y</i>	interface counter-slip length
$\Delta \sigma$	additional stress in intact fibers
10	stress carried by intact fibers at the matrix cracking plane upon unloading
$\sigma_{ m fo}$	nder axial stress in the interface bonded region
1	stress carried by infact fibers at the matrix clacking plane upon reloading
2	composite strain
^с с	composite unloading strain when interface partially debonding
ec_pu	composite reloading strain when interface partially debonding
°c_pr	composite inloading strain when interface completely debonding
°C_IU	composite reloading strain when interface completely debonding
οc_ir α _ε	fiber thermal expansion coefficient
α_c	composite thermal expansion coefficient
ΔT	temperature difference between fabricated and test temperature
U	hysteresis loss energy
$\sigma_{ m tr pu}$	unloading transition stress when interface partially debonding
$\sigma_{\rm tr \ pr}$	reloading transition stress when interface partially debonding
$\sigma_{ m tr\ fu}$	unloading transition stress when interface completely debonding
$\sigma_{ m tr\ fr}$	reloading transition stress when interface completely debonding
Superscript and subscript	
f	fiber
m	matrix
с	composite
	-

fiber-reinforced CMCs. The difference of interface shear stress existing in the new and original interface debonding region affects the interface debonding and interface frictional slipping between fibers and the matrix. Li [12] investigated the hysteresis loops of C/SiC composites with different fiber preforms, i.e., unidirectional, cross-ply, 2D and 2.5D woven, 3D braided and 3D needled, at room temperature using an effective coefficient of fiber volume fraction along the loading direction (ECFL). The hysteresis loops, hysteresis dissipated energy and hysteresis modulus of C/SiC have been predicted. Li et al. [13] investigated the effect of multiple matrix cracking modes on the hysteresis loops of cross-ply CMCs. The matrix cracking mode 3 and mode 5, which involve matrix cracking and fiber/matrix interface debonding in the longitudinal plies have been considered in the hysteresis loops models. The interface shear stress of cross-ply C/SiC has been predicted using experimental fatigue hysteresis loss energy corresponding to different fatigue peak stresses and cycle numbers at room and elevated temperatures. Fantozzi et al. [14] investigated the hysteresis behavior of bi- or multi-directional (cross-weave, cross-ply, 2.5D, [0/+60/–60]_n) with SiC or C long fibers reinforced SiC, MAS-L, Si-B-C or C matrix at room and elevated temperature in inert and oxidation conditions. Li et al. [15–17] developed an approach to estimate the interface shear stress of unidirectional, cross-ply, 2D and 2.5D woven CMCs by comparing the experimental fatigue hysteresis loss energy with theoretical computational values. However, it should be noted that the mechanical hysteresis behavior of CMCs corresponding to different loading types has not been investigated.

Download English Version:

https://daneshyari.com/en/article/5014147

Download Persian Version:

https://daneshyari.com/article/5014147

Daneshyari.com