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a b s t r a c t

In recent years, Finite Fracture Mechanics has proven to be an effective tool to estimate the
strength of mechanical components, allowing fast strength predictions suitable for prelim-
inary sizing and optimization of structures. In the present paper, we intend to corroborate
the Finite Fracture Mechanics approach by showing that failure load estimates are very
close to the ones provided by the well-established Cohesive Crack Model. To this aim,
we consider two classical fracture mechanics problems, i.e. short cracks and V-notches.
In the latter case, we believe to be of relevance also the Cohesive Crack Model semi-
analytical solution herein provided.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The Cohesive Crack Model (CCM) allows one to get accurate and physically-based strength predictions in plain or com-
posite structural elements with stress concentrations or stress intensifications. Unfortunately, CCM usually requires a
numerical implementation with large computing times that are not acceptable for preliminary sizing of structural details.

On the other hand, fast strength predictions can be obtained by applying the point stress criterion (or the average stress
criterion). These methods predict failure when the stress at (or over) a certain distance (the so-called critical distance)
reaches the material tensile strength. Nevertheless these approaches do not possess a clear physical background and show
some drawbacks [1]; moreover, they require expensive experimental programs to identify the critical distances for different
materials and geometries [2]. On the other hand, the recently introduced Finite Fracture Mechanics (FFM) allows one to over-
come this shortcoming since the length of the critical distance is an outcome of the structural problem [1,3,4]. Furthermore
FFM possesses a clear physical interpretation, i.e. fracture is supposed to propagate by finite steps. Thus, in the authors’ opin-
ion, FFM can be seen as the right candidate criterion to achieve accurate, physically-based and fast strength predictions.

Aim of the present paper is to corroborate this choice by showing that, for a couple of simple, yet relevant, case studies,
the CCM and FFM strength predictions are in a very good agreement with each other. The two geometries to be investigated
are represented by an infinite slab containing (i) a short crack and (ii) a (deep) re-entrant corner, both under simple mode I
loading conditions. As well known, in both cases the Linear Elastic Fracture Mechanics (LEFM) fails in predicting the failure
load. On the other hand, we will see that CCM and FFM correctly describe the transition from a toughness-governed failure to
a strength-governed one, as the crack length decreases in the former case, and as the notch opening angle increases in the
latter case. Noteworthy, both problems are solved in an almost completely analytical fashion.
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Before starting to investigate the two geometries, it is worth observing that the agreement between CCM and FFM is to be
expected, despite the different – continuous vs. discrete – crack growth mechanism, because they are both based on the
same energy balance. The energy spent to create the new (unit) fracture surface is in fact Gc for both models (whereas
the theory of critical distances usually does not fulfill this energy balance). A similar analogy between CCM and FFM holds
also for the stress requirement: as well as the choice of the cohesive law is free for CCM, analogously the stress requirement
to be coupled with the energy balance in FFM can be chosen arbitrarily (i.e. according to the material at hand). Moreover,
once we fix the fracture energy and the tensile strength, the effect of the cohesive law shape as well as of the stress require-
ment expression is relatively weak for process zones/crack extensions much smaller than other geometrical lengths (see e.g.
[5] for what concerns CCM).

Wishing to compare CCM and FFM, we expect similar predictions by CCM with a constant cohesive law and by the FFM
approach with a point-wise stress requirement – as proposed by Leguillon [3]. Analogously, similar predictions are argued
for CCMwith a linearly descending cohesive law and for the FFM approach with an average stress condition – as proposed by
Cornetti et al. [1] and applied to V-notches in [6]. In fact, the former choices provides a smaller process zone/crack extension
but with a higher stress field, whereas the latter features yield a larger process zone/crack extension but with a lower stress
field. This conjecture is confirmed for the pull–push shear test [7].

Nomenclature

(x,y) spatial coordinates
F concentrated force
ry normal stress in y direction
rc material tensile strength
r remote uniaxial stress
rf remote failure stress
E0 Young modulus in plane strain conditions
G strain energy release rate
Gc fracture energy
a crack length
ap process zone size
apc process zone size at incipient failure
lch Irwin length
D crack increment
Dc finite crack advancement
w crack opening displacement
wc critical displacement
KI Mode I stress intensity factor
KIc fracture toughness
KI

⁄ generalized stress intensity factor
KIc
⁄ generalized fracture toughness

x notch opening angle
a p �x/2, angle
k William’s eigenvalue
c(x), b(x), l(x) shape functions
n dimensionless generalized fracture toughness
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Fig. 1. Dugdale cohesive law.
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