
Application of gradient elasticity to armchair carbon nanotubes: Size
effects and constitutive parameters assessment

Raffaele Barretta a, Marino Br�ci�c b, Marko �CanaCija b, *, Raimondo Luciano c,
Francesco Marotti de Sciarra a

a Department of Structures for Engineering and Architecture, University of Naples Federico II, Via Claudio 21, 80121 Naples, Italy
b Faculty of Engineering, Department of Engineering Mechanics, University of Rijeka, Vukovarska 58, 51000 Rijeka, Croatia
c Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, via G. Di Biasio 43, 03043 Cassino (FR), Italy

a r t i c l e i n f o

Article history:
Received 4 August 2016
Received in revised form
31 January 2017
Accepted 2 March 2017
Available online 10 March 2017

Keywords:
Nanobeams
Small size parameter
Small-size effects
Nonlocal beam
Carbon nanotubes

a b s t r a c t

The central focus of the paper is set on modelling of bending of armchair carbon nanotubes by means of
the gradient elasticity theory. Influence of small-size effects on the Young's modulus is investigated. An
attempt to determine small size (or nonlocal) parameter employed in the Bernoulli-Euler and Timo-
shenko gradient formulations is presented. To obtain such a goal, the paper provides an extensive set of
molecular structural mechanics simulations of armchair nanotubes with different loading and kinematic
boundary conditions. Dependence of the Young's modulus on small size effects is clearly noticed. Based
on these results, small scale parameters for the gradient model are identified and limits of the method
are pointed out. Results of the study indicate that the widely used theory should be modified to obtain a
physically justified and reliable nanobeam model based on Bernoulli-Euler or Timoshenko kinematic
assumptions.

© 2017 Elsevier Masson SAS. All rights reserved.

1. Introduction

With increasing development of nanotechology, the need for
precise mechanical measurement at the nanometer level is
becoming increasingly important. Most frequently measured
physical variables are the force, the mass and the displacement.
Design of nanosensors used in aforesaid measurements considers
carbon nanotubes (CNTs) as a very promising candidate due to
theirs extraordinary mechanical properties. On the other side of
scale - the macro level - sensors frequently operate exploiting very
basic mechanical principles like the beam deflection and elonga-
tion or by exploiting resonance principles. Therefore, it is natural to
expect that the same principles could be applied at the nanoscale
level as well. However, applications of the macroscale mechanical
laws at nanoscale is far from justified. In particular, various small
size effects become important thus implying the need for the non-
classical mechanical models (Eringen, 1983, 2002; Mindlin, 1964).
The essential assumption of this class of models is that the stress
state does not depend only on the local strain/stress state at the

point being considered, but rather the neighbourhood stress state
has also certain influence. However, as recently discussed in
(Romano and Barretta, 2016; Romano et al., 2017), the nonlocal
elastic model proposed by Eringen cannot be used in order to study
size-effects in nanostructures. Gradient elasticity theory is adopted
in the present paper in order to get a satisfactory mathematical
modelling of scale-effects in nanobeams, see e.g. (Barretta et al.,
2015a; Marotti de Sciarra and Barretta, 2014). Valuable contribu-
tions on this fascinating topic can be found in (Lam et al., 2003;
Giannakopoulos and Stamoulis, 2007; Lazopoulos and
Lazopoulos, 2010; Papargyri-Beskou et al., 2003). Scale-
dependent structural behaviour is described by a characteristic
length, named small-size material parameter c.

A good starting point for the overview of the start-of-art in the
field is the review paper (Arash and Wang, 2012). Among other
issues, it notes that the nonlocal parameter can depend on
boundary conditions, chirality, mode shapes, number of walls and
the nature of motions. Also, the Bernoulli-Euler and Timoshenko
beam models, along with the elastic shell model based on the
classical or first-order shear deformation theories are quite satis-
factory tools for CNT static or dynamic mechanical analysis. In
another research (Wang and Hu, 2005), the Timoshenko beam
formulation gives better results for flexular wave propagation in* Corresponding author.
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single-walled carbon nanotubes than the Bernoulli-Euler beam
formulation.

Returning to the specific values for the small size parameter, the
issue was analysed in vibrational behaviour by means of molecular
dynamics (MD) in the case of Timoshenko beam (Zhang et al.,
2009). Reactive empirical bond-order (REBO) potential was used
while the CNTs investigated were of armchair (5,5) type. Thus, no
dependence on the diameter was investigated. However, different
CNT lengths were used with the aspect ratio in the range
4.67e35.34 nm. Regarding kinematic boundary conditions, simu-
lations were performed for the cantilever beam and the doubly
clamped beam. Results indicate that both local and nonlocal Tim-
oshemko models can give good results, with the condition that the
Young's’ modulus E is properly chosen. Differences in the first
natural frequency when the Timoshenko beam (either local or
nonocal model) is compared to the MD results are up to 10% for the
smaller CNT thickness, while higher thickness (0.34 nm) gives
somewhat larger discrepancy (up to 15%).

Another vibrational analysis, provided by the nonlocal shell
model, was performed in (Arash and Ansari, 2010). As the bench-
mark, MD results described in (Zhang et al., 2009) were used. Yet
again, dependence on the thickness/Young's modulus, boundary
conditions and geometry was found to influence the small size
effects. Different boundary conditions lead toward different values
of the nonlocal parameter (c¼ 1.7 nm for the doubly clamped beam
and c ¼ 2.0 nm for the cantilever beam in the case of thickness
0.34 nm; somewhat lower values are reported for thickness
0.066 nm). Therefore, unlike (Zhang et al., 2009), different values
are reported for c depending on used boundary conditions. Adding
complexity to the issue of thickness selection, the authors conclude
that thickness of 0.34 nm is more suitable in the case of initial
compressive strain, while the thickness of 0.066 nm is to be
preferred if the initial strains are tensile.

A further support for the notion that the nonlocal parameter is
not a single value is provided in (Narendar and Gopalakrishnan,
2011) in which the nonlocal parameter turns out to be a linear
function of the CNT diameter. The result is obtained for the case of
the torsional mode of wave propagation by means of analytical
molecular structural mechanics. Similarly to this, MD investigation
(Duan et al., 2007) finds that the nonlocal parameter cannot be a
single value in the case of vibrations of a Timoshenko beam, thus
again contradicting (Zhanget al., 2009). Inparticular, for a cantilever
CNT beam, the authors report values of c ¼ 1.35 nm and c ¼ 2.64 nm
for aspect ratios 10.16 and15.24, respectively,while c ¼0.308nm for
a doubly clampedbeam. It is emphasized that all these results do not
include influence of loading, i.e. the static boundary conditions.

Therefore, based on the above literature review, the following
issues in the determination of the small size parameter can be
identified as disputable:

� CNT thickness. There is no unanimous understanding about the
thickness value among the researchers, see (Huang et al., 2006)
for a thorough discussion. The thickness reported in the litera-
ture ranges ten-fold: from 0.066 nm to 0.69 nm. There are also
reports indicating the thickness being dependent on the diam-
eter (Wang et al., 2005). Naturally, the value of the Young's
modulus is directly affected by this choice.

� Small-size parameter functional dependence. There are some re-
sults indicating that the small-size parameter is a constant. Most
of literature points out that the small size parameter is the
function of diameter, length, boundary conditions (both kine-
matic and static), chirality and initial strain.

� Statics vs vibrations. Performed modal analyses by molecular
structural mechanics (MSM) or MD do not account for the static
boundary conditions (apart from the initial axial strain in (Arash

and Ansari, 2010)). Static analyses can easily account for the
static boundary conditions.

� Choice of the potential. There are different possibilities for the
choice of the potentials available in the literature and it was
shown that this somewhat affects the nonlocal behaviour as
well.

� Gradient theory.Most authors rely on the validity of the gradient
nonlocal theory. However, simulations of tensile tests of the CNT
indicate dependence of Young's modulus on the diameter; in the
presence of the homogeneous stress field a gradient theory
cannot explain such effects. Although these effects are small,
they are unwanted nevertheless.

� Bernoulli-Euler vs Timoshenko formulation. Most studies of the
CNT vibrations finds Timoshenko formulation better suited. On
the other hand, the Bernoulli-Euler formulation does not need
so many parameters that are not easy to determine.

Consequently, this paper hopes to contribute to the determi-
nation of the small size parameter representing nonlocality of
normal stresses by performing a series of linear static MSM simu-
lations, aiming to provide estimates of the Young's modulus
depending on the armchair CNT diameter and the length. Although
axial loading will be considered as well, the special emphasis will
be given to bending of armchair CNT with various static and ki-
nematic boundary conditions. Having provided such a compre-
hensive set of simulations with the Young's modulus variation as
the result, small size parameters for the Bernoulli-Euler and Tim-
oshenko beam gradient models are determined, even tough some
unexpected results are obtained. Shortcomings of the application of
the gradient model to the Bernoulli-Euler and the Timoshenko
formulation are pointed out. Such a thorough analysis of the
nonlocal bending behaviour of armchair CNTs is not available in the
literature, to the best of the authors' knowledge.

The paper is structured as follows. Second section provides short
summary of the molecular structural mechanics procedure. The
subsequent section carefully documents performed numerical
simulations. The third section deals with each loading case, applies
the nonlocal gradient Bernoulli-Euler and the Timoshenko beam
model and thoroughly reports the results. At the end, the Conclu-
sion section summarize main findings.

2. Interatomic potential and molecular structural mechanics

Molecular structural mechanics is a numerical method aiming
to substitute molecular dynamics in some simpler problems. It was
originally developed by Li and Chou in 2003 (Li and Chou, 2003a).
The central idea is to model interatomic bonds by standard spatial
beam finite elements with 6 degrees of freedom per node, while
nodes are positioned at atom positions. Therefore, an atomic
structure is treated as a spatial frame, Fig. 1. The simplicity of the
procedure and the possibility to apply it in any kind of finite
element software was a main reason for the today's popularity of
the method.

To accurately represent physical behaviour of interatomic
bonds, the proper interatomic potential U must be selected. The
general form is:
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