European Journal of Mechanics A/Solids 65 (2017) 159-177

European Journal of Mechanics A/Solids

journal homepage: www.elsevier.com/locate/ejmsol

Thermal-mechanical analysis on the mass loss of high-speed projectiles penetrating concrete targets

霐

Mechanics

Lei Guo ^{a, b}, Yong He ^{a, *}, Xianfeng Zhang ^a, Yuan He ^a, Jiajie Deng ^a, Zhongwei Guan ^b

^a School of Mechanical Engineering, Nanjing University of Science & Technology, Nanjing 210094, PR China ^b School of Engineering, University of Liverpool, Brownlow Street, Liverpool L69 3GQ, United Kingdom

ARTICLE INFO

Article history: Received 17 March 2016 Received in revised form 14 March 2017 Accepted 29 March 2017 Available online 2 April 2017

Keywords: Mass loss Ogival projectile Thermoplastic High-speed penetration

ABSTRACT

The significant mass loss of the kinetic energy (KE) projectile has been observed in the high-speed penetration (usually $v_0 > 1$ km/s) into concrete target, resulting in nose abrasion, bending, and trajectory deviation as well as great drop of the Depth of Penetration (DOP). The thermoplastic failure of material peeling from the thin exterior interface between the projectile and the concrete is the main mechanism of the mass loss. Combining the heat generated from the friction work and the plastic deformation work during the high-speed penetration process, a discrete iterative method is proposed to investigate the movement and the nose shape variation on the basis of thermoplastic instability of the material. Utilizing the temperature-based failure criterion and the Johnson-Cook (J-C) constitutive model, the receding displacements of the discrete points are determined by the gradient distribution of the temperature change along the depth from the surface of a projectile, which result in blunting of the projectile nose. The predictions of the nose shape, the percentage of the mass loss and the DOP were validated against the experimental data. Then further studies are conducted to investigate the critical velocity of mass loss and the "secondary peak" deceleration. The onset of the mass loss and the occurrence of the distinct pulse of the deceleration in the tunnel stage are regarded as the symbol of the lower and upper velocity limits of the nondeformable penetration regime. In addition, through the comparison of the percentages of heat generated with different mechanisms at different locations of the projectile, the dominant mechanism of the mass loss between the friction and plastic deformation is analyzed to get an insight into the high-speed penetration process.

© 2017 Elsevier Masson SAS. All rights reserved.

1. Introduction

Deep penetration of the high-speed kinetic energy (KE) projectile into concrete target has intrigued the weapon designers due to the rapid development of constructions of both ground and underground military fortifications protected by reinforced concrete. The theoretical models published previously (Rosenberg and Dekel, 2009; Tate, 1967; Kennedy, 1976; Li and Chen, 2003) were mainly based on the hypothesis of "rigid" projectile in the low-speed penetration range ($v_0 < 1 \text{ km/s}$), ignoring the influence of mass abrasion occurred at the projectile. However, with increasing the impact velocity (1 km/s < $v_0 < 2 \text{ km/s}$), the earth penetration

* Corresponding author. E-mail address: yhe1964@mail.njust.edu.cn (Y. He).

http://dx.doi.org/10.1016/j.euromechsol.2017.03.011 0997-7538/© 2017 Elsevier Masson SAS. All rights reserved. weapon (EPW) may face the problem of structural integrity caused by the serious mass loss. The related phenomena, such as nose abrasion, bending or breaking of the projectile, were observed in many penetration experiments (Alekseevskii, 1966; Forrestal et al., 1996; LundgrenHigh-velocit, 1994; Frew et al., 1998), resulting in the trajectory deviation as well as dramatic drop of Depth of Penetration (DOP). Studying mechanisms of the mass loss of a projectile during high-speed penetration has been a topic of interest in the international research community, especially in the weapon development and engineering protection field.

The systematic experimental research on penetration experiments into concrete and grout targets was conducted by Forrestal et al. (1996) and Frew et al. (1998,2000,2006), which produce the most authoritative experimental data. Mass loss up to 7% of the original projectile was recorded when the striking velocity exceeds 1200 m/s, resulting in a dramatic decline of the DOP. Similar experimental investigation was undertaken by He et al. (2010a) and Yang et al. (2012a), which mainly focused on the transition from Nomenclature

1		
1 CO1	ากกา	uen i

ParameterUnitsParameter in Johnson-Cook model R_c MPa R Radius of projectileAMPaInstant deceleration of projectilermDimensionless constantam/3 ² Parameter in Johnson-Cook model5Initial temperatureBMPaInstant length of projectile noseT _c KParameter in Eq. (18)bmInitial length of projectile noseT _c KParameter in Eq. (18)bmParameter in Johnson-Cook modelT _{ork} KParameter in Eq. (18)cHat capacity of projectileT _c KTemperature distribution generated by frictioncJ/(kg. K)Hat capacity of projectileT _a KTemperature distribution generated by frictiondmResistance force on the nose of projectile alongT _a KTotal temperature distributiondmResistance force on the nose of projectile alongT _a KTotal temperature distributionf.MPaStatene force on projectileVWNTotal alengthal velocity of projectilef.MPaFrictional force on projectileVWNNInitial velocity of projectilef.MPaStatene force on projectileV,WNInstant tengential velocity of projectile in Fig. 2f.MPaStatene force on the nose of projectileV,WNInstant tengential velocity of projectilef.MPaStatene force on the nose of projectileV, <td< th=""><th></th><th></th><th></th><th></th><th></th><th></th></td<>						
AMPaInstant deceleration of projectilermDimensionless constantam/s ² Parameter in plonson-Cook modelToKInitial temperaturebmInitial length of projectile noseToKCritical temperaturebmInitial length of projectile noseToKMelting temperatureCHeat capacity of ororeteTmKMelting temperaturedistribution generated by frictionCpJ/(kg:K)Heat capacity of concreteTmKTemperature distribution generated by plasic workcJ/(kg:K)Diameter of projectileTmKTemperature distribution generated by plasic workdmResistance force on the nose of projectile alongTmodKInstant velocity of projectilefMPaFrictional force on projectileVm/sInstant velocity of projectilefMPaShear modulusVom/sInstant tangential velocity of projectile in Fig. 2fMPaShear moduluity of projectileVom/sInstant tangential velocity of projectile in Fig. 2kaW(m-K)Thermal conductivity of concreteVam/sInstant tangential velocity of projectile in Fig. 2kaMPa-s/mConstant parameter in Eq. (11)Z1mInstant tangential velocity of projectile in Fig. 2kaW(m-K)Memalon-Cook model φ mHeavier stagek'Constant parameter in Eq. (11)Z1mInstant non avelocity of projectile<	Parameter	Units	Parameter in Johnson-Cook model	R_c	MPa	Radius of projectile
am/s²Parameter in Johnson-Cook modelSInitial temperatureBMPaInstant length of projectile nose T_{Gr} KCritical temperaturebmInitial length of projectile nose T_{Gr} KParameter in Eq. (18)b0mParameter in Johnson-Cook model T_{DRK} KMelting temperaturecHeat capacity of projectile T_m KTemperature distribution generated by frictioncJ/(kg:K)Niemeter of projectile T_m KTemperature distribution generated by plastic work converted to heatdmResistance force on the nose of projectile along the X axis T_a KTotal temperature distributionf.MPaFrictional force on projectile v m/sCritical velocity of projectilef.MPaFrictional force on projectile v_0 m/sInstant tangential velocity of projectilef.MPaShear modulus v_0 m/sInstant tonmal velocity of projectile in Fig. 2GG GaThermal conductivity of projectile v_n m/sInstant tonmal velocity of projectile in Fig. 2k_pW(m·K)Dimensionless factor for the depth of crater stage w_{1MZ} mInstant tormal velocity of projectile in Fig. 2k_pM(m·K)Dimensionless factor for the depth of crater stage v_n m/sThe effective strain at the contact.k_pM(m·K)Dimensionless factor for the depth of crater stage v_n m/sThe angle in Fig. 2<	Α	MPa	Instant deceleration of projectile	r	m	Dimensionless constant
BMPaInstant length of projectile nose T_{cr} KCritical temperaturebmInitial length of projectile nose T_{cr} KParameter in Eq. (18)b_0mParameter in Johnson-Cook model T_{DEK} KMelling temperatureCHeat capacity of projectile T_m KTemperature distribution generated by plastic workc_J/(kg: K)Heat capacity of concrete T_r KTemperature distribution generated by plastic workdmResistance force on the nose of projectile along the X axis T_r KTotal temperature distribution F_k NUnconfined compressive strength of concretevm/sInitial velocity of projectile F_k MPaFrictional force on projectilev,m/sInitial velocity of projectileFig. 2 f_k MPaFrictional force on projectilev,m/sInitial velocity of projectile in Fig. 2 f_k MPaFrictional force on projectilev,m/sInitial velocity of projectile in Fig. 2 f_k MPaThermal conductivity of concretev,m/sInitial velocity of projectile in Fig. 2 k_k W/(m-k)Thermal conductivity of concretev,m/sInitial velocity of projectile k_k W/(m-k)Thermal conductivity of concretev,m/sInitial velocity of projectile k_k W/(m-k)Thermal conductivity of concretev,m/sInitial velocity of projectile k_k W/(m-k) <td>а</td> <td>m/s²</td> <td>Parameter in Johnson-Cook model</td> <td>S</td> <td></td> <td>Initial temperature</td>	а	m/s ²	Parameter in Johnson-Cook model	S		Initial temperature
bmInitial length of projectile nose T_{DR} KParameter in Eq. (18)b0mParameter in Johnson-Cook model T_{DR} KMelting temperatureCHeat capacity of projectile T_m KTemperature distribution generated by plastic workc,J/(kg-K)Dimeter of projectile T_m KTemperature distributiondmResistance force on the nose of projectile along the X axis T_n KTotal temperature distributionf.MPaFrictional force on projectile v m/s Critical velocity for mass lossf.MPaFrictional force on projectile v_s m/s Instant velocity of projectilefMPaFrictional force on projectile v_s m/s Instant avendrity of projectilefMPaFrictional force on projectile v_s m/s Instant tangential velocity of projectile in Fig. 2GGGPaThermal conductivity of projectile v_s m/s Instant tangential velocity of projectile in Fig. 2k_cW/(m-K)Dimensionless factor for the depth of crater stage w_{HAZ} μm The width of the ASBk'Constant parameter in Eq. (11)Z1mInstant depth of peretrationk_aMPa-s/mConstant parameter in Eq. (11)Z1mInstant depth of projectilek_bmInstant MaxProjectile β The percentage of mass lossM_akgInitial mass of projectile β The	В	MPa	Instant length of projectile nose	T_0	К	Critical temperature
b_0 C C Heat capacity of projectile Heat capacity of concrete Heat capacity of concrete T_{pax} T T T T T total temperature distribution generated by plastic work converted to heat converted to heatHelting temperature Temperature distribution converted to heat C_c J/(kg-K)J/(kg-K) Heat capacity of concrete T_a K Temperature distribution converted to heat d mm Resistance force on the nose of projectile along the X axis T_a K Total temperature distribution F_k KN Unconfined compressive strength of concrete v m/s m/sInitial velocity of projectile F_k MMPaFrictional force on projectile v_s m/s m/sInitial velocity of projectile in Fig. 2 f_c MPaMPaShear modulus v_0 m/s monolucitivity of projectile in Fig. 2 f_c M/s MMPa sime conductivity of concrete v_n m/s m/sInstant normal velocity of projectile in Fig. 2 k_c W/(m-K)Thermal conductivity of concrete v_n m/s m/sThe width of the HAZ k_c W/(m-K)Thermal conductivity of concrete v_n m/s m/sThe width of the HAZ k_c W/(m-K)Thermal conductivity of projectile z_1 m mInstant depth of penetration k_c W/(m-K)Thermal conductivity of projectile z_1 m mInstant depth of penetration k_c W/(m-K)Instant parameter in Eq. (11) Z_1 m mInstant depth of penetration k_c M	b	m	Initial length of projectile nose	T _{cr}	К	Parameter in Eq. (18)
CHeat capacity of projectile T_m KTemperature distribution generated by friction c_p J/(kg: K)Diameter of projectile T_t KTemperature distribution generated by plastic work c_c J/(kg: K)Diameter of projectile T_t KTemperature distribution d mResistance force on the nose of projectile along T_a KTotal temperature distribution f_c MPaFrictional force on projectilevm/sCritical velocity of projectile f_c MPaFrictional force on projectilevsm/sInitial velocity of projectile in Fig. 2 f_c MPaFremal conductivity of projectilev,m/sInstant targential velocity of projectile in Fig. 2 k_p W/(m-K)Dimensionless factor for the depth of crater stage w_{Hax} µmThe width of the HAZ k_c W/(m-K)Dimensionless factor for the depth of crater stage w_{Hax} µmInstant drags of pojectile in Fig. 2 k_r Constant parameter in Eq. (11) Z_1 mInstant drags of pojectile z m k_1 MPa-s/mConstant parameter in Eq. (11) Z_1 mInstant drags of pojectile z m k_2 Initial mass of projectile z mConstant parameter in Eq. (11) z m k_p Midat the each discrete stick α Plastic work to beat conversion factor. k_k Initial mass of projectile β The agle in Fig. 2 ϕ m Nista	b_0	m	Parameter in Johnson-Cook model	T _{DRX}	К	Melting temperature
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	С		Heat capacity of projectile	T_m	К	Temperature distribution generated by friction
c_c $J/(kg\cdot K)$ Diameter of projectileconverted to heat d mResistance force on the nose of projectile along the X axis T_{total} KTotal temperature distribution F_x NUnconfined compressive strength of concrete v m/s Critical velocity for mass loss f_c MPaFrictional force on projectile v_0 m/s Instant velocity of projectile in Fig. 2 f MPaShear modulus v_0 m/s Instant targential velocity of projectile in Fig. 2 G CPaThermal conductivity of concrete v_n m/s Instant normal velocity of projectile in Fig. 2 k_c W/(m·K)Dimensionless factor for the depth of crater stage w_{HAZ} μm The width of the HAZ k'_c Constant parameter in Eq. (11) Z_1 mInstant depth of penetration k_2 Length of projectile z mConstant parameter in Eq. (11) L_p mWith of the each discret stick α Plastic work to heat conversion factor. l_c mInstant mass of projectile β The percentage of mass lossMkgInitial mass of projectile γ The angle in Fig. 2 M_0 kgParameter in Johnson-Cook model θ CRH (caliber-radius-head) for ogival nosenDiscrete number of each time step Δt . \tilde{c}_{AB} s^{-1} n_1 Total discrete number of penetration time \tilde{c}_{AB} s^{-1} n_k Discrete number of penetration time	Cp	J/(kg·K)	Heat capacity of concrete	T_{t}	К	Temperature distribution generated by plastic work
dmResistance force on the nose of projectile along the X axis T_a KTotal temperature distribution the xaris F_x NUnconfined compressive strength of concrete v m/sCritical velocity of mass loss f_c MPaFrictional force on projectile v_s m/sInitial velocity of projectile f MPaShear modulus v_0 m/sInstant tangential velocity of projectile in Fig. 2 G GGPaThermal conductivity of projectile v_r m/sInstant normal velocity of projectile in Fig. 2 k_p W/(m-K)Thermal conductivity of concrete v_n m/sInstant normal velocity of projectile in Fig. 2 k_r Constant parameter in Eq. (11) W_{ASB} µmDepth of the crater stage k' Constant parameter in Eq. (11) Z_1 mInstant depth of penetration k_2 Length of projectile z mConstant parameter in Eq. (11) k_p M/kth of the each discrete stick α Plastic work to heat conversion factor. l_e mInstant mass of projectile γ The angle in Fig. 2 M_0 kgParameter in Johnson-Cook model ϕ $\theta = \pi/2 - \phi$ mDiscrete number of the HAZ ψ The effective strain at the contact shear plane AB n_{M+AZ} Discrete number of each time step Δt . \tilde{e}_{AB} S^{-1} n_{A} Discrete number of penetration time \tilde{e}_{AB} Parameter in Eq. (18) n_{A} Discrete number of pe	c_c	J/(kg·K)	Diameter of projectile			converted to heat
the X axis T_{total} KInstant velocity of projectile F_x NUnconfined compressive strength of concretevm/sCritical velocity for mass loss f_c MPaShear modulusv_0m/sInstant tangential velocity of projectile in Fig. 2 f MPaShear modulus tity of projectilev, m/sInstant normal velocity of projectile in Fig. 2 G GPaThermal conductivity of concretev, m/sInstant normal velocity of projectile in Fig. 2 k_p W/(m-K)Dimensionless factor for the depth of crater stage w_{HAZ} μ mThe width of the HAZ k_c W/(m-K)Dimensionless factor for the depth of crater stage w_{HAZ} μ mDepth of the crater stage k' Constant parameter in Eq. (11) Z_1 mInstant depth of potentation k_2 Length of projectile Z mConstant parameter in Eq. (11) L_p mWidth of the each discrete stick α Plastic work to heat conversion factor. l_c mInstant mass of projectile γ The angle in Fig. 2 M_0 kgParameter in Johnson-Cook model θ CRH (caliber-radius-head) for ogival nosenDiscrete number of the HAZ Ψ The effective strain rate at the contact shear plane AB m_{VLAZ} Discrete number of each time step ΔL . \tilde{e}_{AB} s^{-1} m_{VLAZ} Discrete number of polectile \tilde{e}_{AB} Parameter in Eq. (18) n_1 Total discrete number of each time step ΔL .<	d	m	Resistance force on the nose of projectile along	T_a	К	Total temperature distribution
F_x NUnconfined compressive strength of concretevm/sCritical velocity for mass loss f_c MPaFrictional force on projectilevsm/sInitial velocity of projectile f MPaShear modulusvom/sInstant tangential velocity of projectile in Fig. 2 G GPaThermal conductivity of projectilev,m/sInstant normal velocity of projectile in Fig. 2 k_p W/(m-K)Thermal conductivity of concretev,m/sThe width of the HAZ k_c W/(m-K)Dimensionless factor for the depth of crater stage ψ_{HAZ} mThe width of the ASB k' Constant parameter in Eq. (11)Z1mInstant depth of penetration k_2 Length of projectileZmConstant parameter in Eq. (11) L_p mWidth of the each discrete stick α Plastic work to heat conversion factor. l_c mInstant mass of projectile γ The engle in Fig. 2 M_0 kgParameter in Johnson-Cook model ϕ $\theta = \pi/2 - \phi$ m Discrete number of the HAZ ψ The effective strain rate at the contact shear plane AB n_{xHAZ} Discrete number of genetration time \bar{e}_{AB} \bar{e}_{AB} n_{xHAZ} Discrete number of penetration time \bar{e}_{AB} Parameter in Eq. (18) n_{xHAZ} Discrete number of penetration time \bar{e}_{AB} \bar{e}_{AB} n_{xHAZ} Discrete number of penetration time \bar{e}_{AB} \bar{e}_{AB}			the X axis	T _{total}	К	Instant velocity of projectile
f_c MPaFrictional force on projectile v_s m/s Initial velocity of projectile f MPaShear modulus v_0 m/s Instant tangential velocity of projectile in Fig. 2 G CPaThermal conductivity of projectile v_r m/s Instant nametrial velocity of projectile in Fig. 2 k_p $W/(m \cdot K)$ Thermal conductivity of concrete v_r m/s Instant nametrial velocity of projectile in Fig. 2 k_c $W/(m \cdot K)$ Dimensionless factor for the depth of crater stage v_r m/s The width of the HAZ k_c $W/(m \cdot K)$ Dimensionless factor for the depth of crater stage w_{HAZ} μm Depth of the crater stage k_1 MPa · S/mConstant parameter in Eq. (11) Z_1 m Instant depth of penetration k_2 Length of projectile z m Constant parameter in Eq. (11) L_p m Width of the each discrete stick α Plastic work to heat conversion factor. l_c m Instant mass of projectile γ The angle in Fig. 2 M_0 kgParameter in Johnson-Cook model ϕ $\theta = \pi/2 - \phi$ m Parameter in Johnson-Cook model ϕ σ^{-1} n_{HAZ} Discrete number of the HAZ W' The effective strain rate at the contact shear plane AB n_{HAZ} Discrete number of penetration time \bar{e}_{AB} Parameter in Eq. (18) n_1 Total discrete number along the radius \bar{e}_{AB} Parameter in Eq. (18) n	$F_{\mathbf{x}}$	Ν	Unconfined compressive strength of concrete	ν	m/s	Critical velocity for mass loss
fMPaShear modulus v_0 m/sInstant tangential velocity of projectile in Fig. 2GGPaThermal conductivity of projectile v_7 m/sInstant normal velocity of projectile in Fig. 2 k_p W/(m·K)Thermal conductivity of concrete v_n m/sThe width of the HAZ k_c W/(m·K)Dimensionless factor for the depth of crater stage v_{hAZZ} µmThe width of the ASB k' Constant parameter in Eq. (11)Z1mInstant depth of penetration k_2 Length of projectileZmConstant parameter in Eq. (11) k_p Mido the each discrete stick α Plastic work to heat conversion factor. l_c mInstant mass of projectile β The percentage of mass lossMkgInitial mass of projectile ϕ $\theta = \pi/2 - \phi$ mParameter in Johnson-Cook model ϕ $\theta = \pi/2 - \phi$ mDiscrete number of the HAZ Ψ The effective strain rate at the contact shear plane ABn_kthzzDiscrete number of genetration time \bar{e}_{AB} \bar{e}_{AB} niTotal discrete number of penetration time \bar{e}_{AB} Parameter in Eq. (18)niNose factor in Eq. (13) μ Density of projectile materialniNose factor in Eq. (13) μ_k Density of projectile materialniNormal pressure on projectile ϕ_c kg/m^3 niHeat generation by friction conducted into concrete i Number of time stepsQ<	f_c	MPa	Frictional force on projectile	vs	m/s	Initial velocity of projectile
G GPa Thermal conductivity of projectile v_{τ} m/s Instant normal velocity of projectile in Fig. 2 k_p $W/(m\cdot K)$ Thermal conductivity of concrete v_n m/s Instant normal velocity of projectile in Fig. 2 k_c $W/(m\cdot K)$ Dimensioness factor for the depth of crater stage v_n m/s Instant normal velocity of projectile in Fig. 2 k_c $W/(m\cdot K)$ Dimensioness factor for the depth of crater stage w_n m/s Instant depth of the ASB k' Constant parameter in Eq. (11) Z_1 m Instant depth of penetration k_2 Length of projectile Z m Constant parameter in Eq. (11) L_p m Width of the each discrete stick α Plastic work to heat conversion factor. l_c m Instant mass of projectile γ Th ended to projectile M_0 kgInitial mass of projectile γ The angle in Fig. 2 M_0 kgInitial mass of projectile γ The angle in Fig. 2 m_0 Parameter in Johnson-Cook model θ CRH (caliber-radius-head) for ogival nose n Discrete number of the HAZ Ψ The effective strain rate at the contact shear plane AB n_{kHAZ} Discrete number of penetration time $\bar{\epsilon}_{AB}$ Parameter in Eq. (18) n Discrete number of penetration time $\bar{\epsilon}_{AB}$ Parameter in Eq. (18) n_1 Total discrete number of penetration time $\bar{\epsilon}_{AB}$ Parameter in Eq. (18) n_1 Norm	f	MPa	Shear modulus	v_0	m/s	Instant tangential velocity of projectile in Fig. 2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	G	GPa	Thermal conductivity of projectile	v_{τ}	m/s	Instant normal velocity of projectile in Fig. 2
k_c $W/(m\cdot K)$ Dimensionless factor for the depth of crater stage w_{HAZ} μ mThe width of the ASB k' Constant parameter in Eq. (11) Z_1 mDepth of the crater stage k_1 MPa-s/mConstant parameter in Eq. (11) Z_1 mInstant depth of penetration k_2 Length of projectile z mConstant parameter in Eq. (11) z m k_p mWidth of the each discrete stick α Plastic work to heat conversion factor. l_c mInstant mass of projectile β The percentage of mass loss M kgInitial mass of projectile γ The angle in Fig. 2 M_0 kgParameter in Johnson-Cook model θ CRH (caliber-radius-head) for ogival nose n Discrete number of the HAZ Ψ The effective strain rate at the contact shear plane AB n_{xHAZ} Discrete number of each time step Δt . \tilde{e}_{AB} Parameter in Eq. (18) ni Total discrete number along the radius \tilde{e}_{DRX} s^{-1} Conficient of friction ni Normal pressure on projectile ρ_p kg/m^3 Density of concrete p MPaConstant parameter in Eq. (13) ρ_c kg/m^3 Density of concrete q_p JHeat generation by friction conducted into projectile i i q_p JHeat generation by friction conducted into projectile ρ_c kg/m³ p_p Heat generation by friction conducted into projectile i i </td <td>k_p</td> <td>W/(m⋅K)</td> <td>Thermal conductivity of concrete</td> <td>vn</td> <td>m/s</td> <td>The width of the HAZ</td>	k_p	W/(m⋅K)	Thermal conductivity of concrete	vn	m/s	The width of the HAZ
k'Constant parameter in Eq. (11) w_{ASB} μ mDepth of the crater stagek1MPa ·s/mConstant parameter in Eq. (11)Z1mInstant depth of penetrationk2Length of projectileZmConstant parameter in Eq. (11)LpmWidth of the each discrete stick α Plastic work to heat conversion factor.LcmInstant mass of projectile β The percentage of mass lossMkgInitial mass of projectile γ The angle in Fig. 2M0kgParameter in Johnson-Cook model θ CRH (caliber-radius-head) for ogival nosenDiscrete number of the HAZ Ψ The effective strain rate at the contact shear plane ABn_{KHAZ}Discrete number of penetration time \bar{e}_{AB} S^{-1}niTotal discrete number of penetration time \bar{e}_{AB} Parameter in Eq. (18)niTotal discrete number of pojectile μ Density of projectile materialniNormal pressure on projectile ρ_p kg/m³Density of concretepMPaConstant parameter in Eq. (13) ρ_c kg/m³pMPaConstant parameter in Eq. (13) ρ_c kg/m³pHeat generation by friction conducted into projectileiSuperscriptQJHeat generation by friction conducted into concreteSuperscriptSequence number in spatial dimensionQJHeat generation by friction conducted into concretejSequence number in spatial dimension<	$\hat{k_c}$	W/(m⋅K)	Dimensionless factor for the depth of crater stage	W _{HAZ}	μm	The width of the ASB
k_1 MPa s/mConstant parameter in Eq. (11) Z_1 mInstant depth of penetration k_2 Length of projectile z mConstant parameter in Eq. (11) L_p mWidth of the each discrete stick α Plastic work to heat conversion factor. l_c mInstant mass of projectile β The percentage of mass loss M kgInitial mass of projectile γ The angle in Fig. 2 M_0 kgParameter in Johnson-Cook model φ $\theta=\pi/2-\varphi$ m Parameter in Johnson-Cook model θ CRH (caliber-radius-head) for ogival nose n Discrete number of the HAZ Ψ The effective strain rate at the contact shear plane AB n_{XHAZ} Discrete number of each time step Δt . \bar{e}_{AB} s^{-1} n_{MHAZ} Total discrete number of penetration time \bar{e}_{AB} s^{-1} Coefficient of friction n_i Total discrete number of penetration time \bar{e}_{AB} s^{-1} Coefficient of friction n_i Normal pressure on projectile ρ_p kg/m^3 Density of projectile material n_i Normal pressure on projectile ρ_c kg/m^3 Density of concrete p MPaConstant parameter in Eq. (13) ρ_c kg/m^3 Density of concrete Q JHeat generation by friction conducted into projectile j Sequence number of time steps q_c JDynamic strength parameter of concrete j Sequence number in spatial dimension	k'		Constant parameter in Eq. (11)	WASB	μm	Depth of the crater stage
k_2 Length of projectile z mConstant parameter in Eq. (11) L_p mWidth of the each discrete stick α Plastic work to heat conversion factor. l_c mInstant mass of projectile β The percentage of mass loss M kgInitial mass of projectile γ The angle in Fig. 2 M_0 kgParameter in Johnson-Cook model φ $\theta = \pi/2 - \varphi$ m Parameter in Johnson-Cook model θ CRH (caliber-radius-head) for ogival nose n Discrete number of the HAZ Ψ The effective strain rate at the contact shear plane AB n_{xHAZ} Discrete number of each time step Δt . \dot{e}_{AB} s^{-1} n_{tHAZ} Total discrete number of penetration time \dot{e}_{AB} Parameter in Eq. (18) n_{if} Nose factor in Eq. (1) μ Density of projectile material n_{tHAZ} Normal pressure on projectile ρ_p kg/m^3 Density of concrete p MPaConstant parameter in Eq. (13) ρ_c kg/m^3 Density of concrete Q JHeat generation by friction conducted into projectile i i Q_c JDynamic strength parameter of concreteSubscriptSequence number in spatial dimension q_c JDynamic strength parameter of concrete j Parameter in Johnson-Cook model	k_1	MPa∙s/m	Constant parameter in Eq. (11)	Z_1	m	Instant depth of penetration
L_p mWidth of the each discrete stick α Plastic work to heat conversion factor. l_c mInstant mass of projectile β The percentage of mass loss M kgInitial mass of projectile γ The angle in Fig. 2 M_0 kgParameter in Johnson-Cook model φ $\theta = \pi/2 - \varphi$ m Parameter in Johnson-Cook model θ CRH (caliber-radius-head) for ogival nose n Discrete number of the HAZ Ψ The effective strain rate at the contact shear plane AB n_{xHAZ} Discrete number of penetration time \bar{e}_{AB} s^{-1} The effective strain at the contact shear plane AB n_{tHAZ} Total discrete number of penetration time \bar{e}_{AB} Parameter in Eq. (18) n_i Total discrete number along the radius \hat{e}_{DRX} s^{-1} Coefficient of friction n_i Nose factor in Eq. (1) μ Density of projectile material N Normal pressure on projectile ρ_c kg/m^3 Density of concrete p Heat generation by frictionSuperscriptNumber of time stepsDensity of concrete Q_c JHeat generation by friction conducted into projectile i Sequence number in spatial dimension Q_c JDynamic strength parameter of concrete j Parameter in Johnson-Cook model	k_2		Length of projectile	Z	m	Constant parameter in Eq. (11)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Lp	m	Width of the each discrete stick	α		Plastic work to heat conversion factor.
M kgInitial mass of projectile γ The angle in Fig. 2 M_0 kgParameter in Johnson-Cook model φ $\theta = \pi/2 - \varphi$ m Parameter in Johnson-Cook model θ CRH (caliber-radius-head) for ogival nose n Discrete number of the HAZ Ψ The effective strain att the contact shear plane AB n_{xHAZ} Discrete number of each time step Δt . \dot{e}_{AB} s^{-1} The effective strain at the contact shear plane AB n_{tHAZ} Total discrete number of penetration time \bar{e}_{AB} s^{-1} Coefficient of friction ni Total discrete number along the radius \dot{e}_{DRX} s^{-1} Coefficient of friction nj Nose factor in Eq. (1) μ Density of projectile material N Normal pressure on projectile ρ_c kg/m^3 Density of concrete p' Heat generation by friction conducted into projectile i SuperscriptNumber of time steps Q JHeat generation by friction conducted into concrete $Subscript$ Sequence number in spatial dimension Q_c JDynamic strength parameter of concrete j Parameter in Johnson-Cook model	$\hat{l_c}$	m	Instant mass of projectile	β		The percentage of mass loss
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	М	kg	Initial mass of projectile	γ		The angle in Fig. 2
mParameter in Johnson-Cook model θ CRH (caliber-radius-head) for ogival nosenDiscrete number of the HAZ Ψ The effective strain rate at the contact shear plane AB n_{xHAZ} Discrete number of each time step Δt . $\dot{\bar{e}}_{AB}$ s^{-1} The effective strain at the contact shear plane AB n_{xHAZ} Total discrete number of penetration time \bar{e}_{AB} Parameter in Eq. (18) n_{tHAZ} Total discrete number along the radius \dot{e}_{DRX} s^{-1} Coefficient of friction n_i Total discrete number on projectile μ Density of projectile material n_i Nose factor in Eq. (1) μ Density of concrete N Normal pressure on projectile ρ_p kg/m^3 Density of concrete p MPaConstant parameter in Eq. (13) ρ_c kg/m^3 Density of concrete Q JHeat generation by friction conducted into projectile i Sequence number of time steps Q_c JHeat generation by friction conducted into concreteSubscriptSequence number in spatial dimension Q_c JDynamic strength parameter of concrete j Parameter in Johnson-Cook model	M_0	kg	Parameter in Johnson-Cook model	φ		$\theta = \pi/2 - \varphi$
nDiscrete number of the HAZ Ψ The effective strain rate at the contact shear plane AB n_{xHAZ} Discrete number of each time step Δt . \bar{e}_{AB} s^{-1} The effective strain at the contact shear plane AB n_{tHAZ} Total discrete number of penetration time \bar{e}_{AB} Parameter in Eq. (18) ni Total discrete number along the radius \hat{e}_{DRX} s^{-1} Coefficient of friction nj Nose factor in Eq. (1) μ Density of projectile materialNNormal pressure on projectile ρ_p kg/m³Density of concrete p MPaConstant parameter in Eq. (13) ρ_c kg/m³ p^* Heat generation by friction conducted into projectile i Q_p JHeat generation by friction conducted into concreteSubscript Q_c JDynamic strength parameter of concrete j Sequence number in spatial dimension Q_c JDynamic strength parameter of concrete j Parameter in Johnson-Cook model	m		Parameter in Johnson-Cook model	θ		CRH (caliber-radius-head) for ogival nose
n_{xHAZ} Discrete number of each time step Δt . $\dot{\bar{e}}_{AB}$ s^{-1} The effective strain at the contact shear plane AB n_{tHAZ} Total discrete number of penetration time \bar{e}_{AB} Parameter in Eq. (18) ni Total discrete number along the radius \dot{e}_{DRX} s^{-1} Coefficient of friction nj Nose factor in Eq. (1) μ Density of projectile material N Normal pressure on projectile ρ_p kg/m ³ Density of concrete p MPaConstant parameter in Eq. (13) ρ_c kg/m ³ Density of time steps Q JHeat generation by friction conducted into projectile i Number of time steps Q_c JHeat generation by friction conducted into concreteSubscriptSequence number in spatial dimension Q_c JDynamic strength parameter of concrete j Parameter in Johnson-Cook model	п		Discrete number of the HAZ	Ψ		The effective strain rate at the contact shear plane AB
n_{tHAZ} Total discrete number of penetration time \overline{v}_{AB} Parameter in Eq. (18) ni Total discrete number along the radius \dot{v}_{DRX} s^{-1} Coefficient of friction nj Nose factor in Eq. (1) μ Density of projectile material N Normal pressure on projectile ρ_p kg/m ³ p MPaConstant parameter in Eq. (13) ρ_c kg/m ³ p Heat generation by frictionSuperscriptNumber of time steps Q JHeat generation by friction conducted into projectile i Q_p JHeat generation by friction conducted into concreteSubscriptSequence number in spatial dimension Q_c JDynamic strength parameter of concrete j Parameter in Johnson-Cook model	n _{xHAZ}		Discrete number of each time step Δt .	EAR	s ⁻¹	The effective strain at the contact shear plane AB
niTotal discrete number along the radius $\dot{\epsilon}_{DRX}$ s^{-1} Coefficient of frictionnjNose factor in Eq. (1) μ Density of projectile materialNNormal pressure on projectile ρ_p kg/m ³ pMPaConstant parameter in Eq. (13) ρ_c kg/m ³ pHeat generation by frictionSuperscriptNumber of time stepsQJHeat generation by friction conducted into projectileiQ_pJHeat generation by friction conducted into concreteSubscriptQ_cJDynamic strength parameter of concretejSequence number in Johnson-Cook modelj	$n_{\rm tHAZ}$		Total discrete number of penetration time	$\overline{\epsilon}_{AB}$		Parameter in Eq. (18)
nj Nose factor in Eq. (1) μ Density of projectile material N Normal pressure on projectile ρ_p kg/m^3 Density of concrete p MPaConstant parameter in Eq. (13) ρ_c kg/m^3 Density of concrete p' Heat generation by frictionSuperscriptNumber of time steps Q JHeat generation by friction conducted into projectile i Q_p JHeat generation by friction conducted into concreteSubscriptSequence number in spatial dimension Q_c JDynamic strength parameter of concrete j Parameter in Johnson-Cook model	ni		Total discrete number along the radius	ĖDRX	s ⁻¹	Coefficient of friction
NNormal pressure on projectile ρ_p kg/m^3 Density of concretepMPaConstant parameter in Eq. (13) ρ_c kg/m^3 Density of concretep'Heat generation by frictionSuperscriptNumber of time stepsQJHeat generation by friction conducted into projectilei Q_p JHeat generation by friction conducted into concreteSubscriptSequence number in spatial dimension Q_c JDynamic strength parameter of concretejParameter in Johnson-Cook model	nj		Nose factor in Eq. (1)	μ		Density of projectile material
p MPaConstant parameter in Eq. (13) ρ_c kg/m^3 p Heat generation by frictionSuperscriptNumber of time steps Q JHeat generation by friction conducted into projectile i Q_p JHeat generation by friction conducted into concreteSubscriptSequence number in spatial dimension Q_c JDynamic strength parameter of concrete j Parameter in Johnson-Cook model	Ν		Normal pressure on projectile	ρ_n	kg/m ³	Density of concrete
pHeat generation by frictionSuperscriptNumber of time stepsQJHeat generation by friction conducted into projectileiQpJHeat generation by friction conducted into concreteSubscriptSequence number in spatial dimensionQcJDynamic strength parameter of concretejParameter in Johnson-Cook model	р	MPa	Constant parameter in Eq. (13)	ρ _c	kg/m ³	
QJHeat generation by friction conducted into projectilei Q_p JHeat generation by friction conducted into concreteSubscriptSequence number in spatial dimension Q_c JDynamic strength parameter of concretejParameter in Johnson-Cook model	p^*		Heat generation by friction	Superscript	01	Number of time steps
QpJHeat generation by friction conducted into concreteSubscriptSequence number in spatial dimensionQcJDynamic strength parameter of concretejParameter in Johnson-Cook model	Q	J	Heat generation by friction conducted into projectile	i		
Q _c J Dynamic strength parameter of concrete j Parameter in Johnson-Cook model	Q_p	Ĵ	Heat generation by friction conducted into concrete	Subscript		Sequence number in spatial dimension
	Q _c	J	Dynamic strength parameter of concrete	j		Parameter in Johnson-Cook model

rigid to deformable penetration state with various strengths of the projectiles. It was shown that the curved trajectory, erosion and bending of projectiles are the common phenomena in the highspeed penetration. Furthermore, Silling et al (Silling and Forreatal, 2007). established a linearly proportional relationship, through empirical fitting of the experimental data, between the mass abrasion and the initial kinetic energy of a projectile below the velocity of 1000 m/s. Meanwhile, Chen et al. (2010) summarized the experimental data (Forrestal et al., 1996; Frew et al., 1998) and pointed out that the mass loss is closely related to the striking velocity of the penetrator and the category of the aggregate casted in the concrete target. Obviously, figuring out the influence of heat generated by dynamic friction between the projectile and targets is essential for understanding the thermo-mechanical mass loss process of a projectile. Klepaczko and Hughes (2005) conducted a theoretical investigation into the surface layer thermodynamics of steel projectile and proposed universal parameters, such as the rate of wear and rate sensitivity of wear. Recently, Guo et al. (2014) undertook a systematic investigation on the surface evolution of the recovered projectile subjected to a high-speed penetration at the microscopic scale. Microstructural features, including the mixed zone (MZ), the refined zone (RZ) and original zone (OZ), were analyzed respectively. In addition, the underlying mechanisms of the mass loss during high-speed penetration were demonstrated.

Due to the complex transient characteristics of the high-speed penetration process, it is very difficult to record the real-time physical parameters in experiments. Relevant theoretical research is necessary to reveal the underlying mechanisms of the mass loss. Based on the assumption that the heat converted from friction work melt the material on the nose of the projectile, an approximate analytical solution was presented by Jones et al. (2002a, 2003). to estimate a quantitative value of mass loss. The calculated results showed that the mass loss was directly proportional to the tunnel length, the diameter of projectile and the shear strength of target. Later, Beissel and Johnson (2000,2002). presented a surface abrasion criterion that is proportional to the relative sliding velocity and the normal stress between projectile and target. This criterion was incorporated in an axisymmetric finite-element algorithm with a fully rezoning method. It was found that numerical predictions were in a reasonable agreement with the available literature experimental data. Considering the velocity-dependent friction, an analytical incremental model was applied by Davis et al. (2003) to investigate the mass loss and to assess the projectile's performance in terms of its wear characteristics. Chen et al. (2010) also proposed an engineering abrasion model, based on the graphical discussion on the nose of the residual projectiles after high-speed penetration into concrete. Besides, utilizing Chen's model (Chen et al., 2010), further analyses were carried out by He and Chen (2011a), He et al. (2014) to discuss about the characteristic parameters of the projectile during penetration. It was demonstrated that the pulse shape of deceleration during high-speed penetration with mass loss was quite different from the "rigid" case. Moreover, taking into account scratch and heat melt effects pointed out by Jones et al. (2002a) and Davis et al. (2003) respectively, He et al. (2010b) suggested an empirical expression to estimate the mass loss rate with seven main influential variables, i.e. the initial nose shape, initial impact velocity, melting heat, shank diameter of a projectile, density and strength of the target as well as aggregate hardness of the target. The effects of these variables on the ultimate mass loss of a penetrator were compared, which provided useful information for engineering

Download English Version:

https://daneshyari.com/en/article/5014273

Download Persian Version:

https://daneshyari.com/article/5014273

Daneshyari.com