European Journal of Mechanics A/Solids 65 (2017) 178—194

journal homepage: www.elsevier.com/locate/ejmsol

Contents lists available at ScienceDirect | =

European Journal of Mechanics A/Solids

European Journal of

Mechanics

A/Solids

Nonlinear analysis of beams with rotation gradient dependent
potential energy for constrained micro-rotation

A. Arbind, J.N. Reddy’, A.R. Srinivasa

@ CrossMark

Advanced Computational Mechanics Laboratory, Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843-3123, USA

ARTICLE INFO ABSTRACT

Article history:

Received 10 September 2016
Received in revised form

26 January 2017

Accepted 2 April 2017
Available online 9 April 2017

In this study, the weak-form finite element model for bending of beams considering constrained micro-
rotation and rotation gradient-dependent potential energy is developed for the moderate rotationcase.
The governing equations for a general higher-order beam theory with the von Kiarman geometric
nonlinearity are derived from the principle of virtual displacements. The formulated finite element
model is valid for homogeneous, orthotropic, and functionally graded classical and microstructure-

dependent beams. Further, the specialization of the theory to various existing beam theories is also
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presented. The analytical solution for the simply supported beam for the linear case is also derived. In the
numerical examples presented, the stiffening effect due to the consideration of microstructure in the
micro-beam is illustrated. The parametric effect of the material length scale on the bending moment and
stress is also investigated.
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1. Introduction
1.1. Background

There has been surge of research in recent decades in the area of
non-classical and non-local continuum mechanics in an attempt to
model micro- and nano-sized structures, for example, nematic
elastomers, fibrous composites, carbon nanotube-reinforced coat-
ings, granular solids, liquid crystal elastomers, polarization inertia
in ferroelectrics, and intrinsic spin in ferromagnetics, to name a
few. For such applications, the classical continuum mechanics is
inadequate in modeling the true response. In small scale structures,
the potential energy due to deformation of the material particles or
microstructure, which could be a unit cell in the case of crystalline
solid or stiff inclusions in fibrous or granular solid, becomes sig-
nificant. In these cases, the response depends on several material
length scale parameters, which are very small compared to the
structural dimensions. In the case of large-scale structures, the ratio
of the length scale to the structural dimensions is very small and,
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therefore, the classical continuum model tend to be adequate for
modeling of the response. But as the structural length of the
specimen becomes comparable to the characteristic lengths of the
material, one must consider non-local and non-classical continuum
models.

In general, the continuum where the material points are
considered to be undergoing rigid rotations along with displace-
ments during deformation is referred to as the Cosserat continuum.
For such a solid, there are six degrees of freedom at each material
point, namely, three translations and three rotations. Further, the
rotation of the material particles or stiff inclusions could be
considered as constrained; that is, the microrotation of the material
point is the same as the macro rotation at that point and there is no
“energy due to rotational mismatch.” The inclusion of the addi-
tional internal rotational degrees of freedom modifies the balance
of angular momentum and gives rise to couple stress and asym-
metric stress tensor along with surface tension like force in the case
of a solid.

Many researchers (see, e.g., Cosserat and Cosserat, 1909;
Truesdell and Toupin, 1960; Toupin, 1962; Mindlin and Tiersten,
1962; Mindlin, 1964; Cemal Eringen and Suhubi, 1964; Suhubl
and Cemal Eringen, 1964) have contributed to the development of
theory of a Cosserat continuum. In relatively recent times, in the
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case of constrained micro-rotation of material points, Yang et al.
(2002) in their modified couple stress theory suggested higher-
order moment equilibrium (balance of moment of moments) in
the linear framework which results in symmetric couple stress
tensor. More recently, Srinivasa and Reddy (2013) has studied the
Cosserat continuum in the case of finite rotation and constrained
microrotation of material particles. Starting from the physical
reasoning, they established the energy dependence on rotation
gradient through material frame indifference, and presented the
governing equations and boundary conditions for the von Karman
plates and beams in the case of moderate rotations. Upon lineari-
zation of the theory, they obtained Mindlin's couple stress theory as
a special case. The presence of surface tension-like term is also
shown in the work. In the case of beams and plates, they have
considered a general quadratic function for the strain energy po-
tential for a general shape and orientation of material particles or
inclusions (i.e., not necessarily centro-symmetric), which allows
more than one length scale parameter, depending on the orienta-
tion of the inclusions in the isotropic matrix of the material.

In the last decade, many papers have appeared on modeling the
response of structural elements like beams, plates, and shells, ac-
counting for the length scale effects; they contained parametric
studies to determine the length scale effects on bending and vi-
bration response. Park and Gao (2006) and Ma et al. (2008, 2010)
have studied the Bernoulli—Euler, Timoshenko, and Red-
dy—Levinson beam theories in the case of modified couple stress
theory. Santos and Reddy (2012) have studied vibrations of beams,
while Reddy (2011), Arbind and Reddy (2013), Arbind et al. (2014),
and Reddy et al. (2016) studied functionally graded, microstructure
dependent beams considering the von Karman nonlinearity. Gao
et al. (2013) studied plates by extending Reddy's third-order plate
theory to account for the modified couple stress term in the strain
energy functional. Kim and Reddy (2013, 2015) presented analytical
and finite element solutions for functionally graded plates with
modified couple stress term. In all these studies, the constitutive
relation for centro-symmetric material (see Mindlin, 1964) or
isotropic Cosserat solid (as termed in Eringen's micropolar theory)
is used and rotations of the material particles or inclusions have
been assumed to be constrained. For this reason, the curvature
tensor is obtained from the deformation field of the matrix material
itself. These studies show that the material length scale contributes
some extra stiffness to the structure as compared with the con-
ventional theories. Reddy and Srinivasa (2014) has summarized the
modified couple stress theory and the rotation gradient dependent
theory and formulated finite element models for moderate rotation
Bernoulli-Euler and Timoshenko beam theories.

1.2. Present study

The theory suggested by Srinivasa and Reddy (2013), Reddy and
Srinivasa (2014) is a generalization of the linear micropolar theory
to the case of large constrained microrotation and finite strain for a
general class of materials, which requires more than one length
scale to characterize a material with an arbitrary microstructure. In
the existing literature, the analysis of structures like beams, plates,
and shells are based on the constitutive relation in which material
points or the small inclusions are centro-symmetric or fully
isotropic. And the linear modified couple stress theory has been
used in most of the studies mentioned in the previous section for
mathematical modeling of structural elements for moderate rota-
tion case.

In the present study, we extend the study of nonlinear response
of beams, in view of a broad class of materials with the use of the
rotation gradient dependent theory, to account for moderate ro-
tations and strains. We develop a weak-form finite element model

of beams with the von Karman geometric nonlinearity. First, we
formulate a general higher-order beam theory based on Taylor's
series expansion of the displacement field about the centroidal axis
for classical as well as microstructure dependent beams and then
specialize it to the case of the Bernoulli—Euler, Timoshenko, and
general third-order beam theories. Based on this, we develop a
nonlinear weak-form, displacement-based finite element model.
We also present the analytical solution for simply supported linear
beams to provide a comparison for the finite element solution.

2. Cosserat continuum theory for finite deformation and
constrained micro-rotation

Let us consider a body .%# in which particle X is at X in reference
frame at time t = 0. After deformation, at time ¢, it occupies posi-
tion Xx. Let F be the deformation gradient and ® be the orientation
tensor of the directors attached to the material points; then the
potential energy can be expressed as (see Srinivasa and Reddy, 2013
for details):

¥ =Y(F,0,V0) (1)

where VO is the gradient of the orientation tensor with respect to
the reference frame. By applying the principle of invariance under
superposed rigid body motion, it can be shown that the potential
energy has the following dependence:

Y= @(c.,RT.@,RT-vG)) (2)

where C = U? is the right Cauchy—Green stretch tensor and R is the
orthogonal rotation tensor. In the case of fully constrained di-
rectors, the orientation tensor can be stipulated as the rotation
tensor, and hence the potential energy functional can be expressed

as,!

¥ =y (U.R"-R) (3)

where U and R are symmetric and proper orthogonal tensors,
respectively; their variation are 6U = 6U” and 0R = 6Q-R, where
0Q is a skew-symmetric tensor. Let f be the body force and u be the
displacement field. Then to obtain the equation of equilibrium, we
consider the following lagrangian:

L= /l//(U,RT-VR> - tr(PT-G> —f-udV,where G=R-U—F

(4)

where P is the Lagrange multiplier and G = 0 is the constraint
condition. In the case of stable equilibrium, the potential energy can
be minimized with respect to the displacement field under given
constraint conditions, whereas in case of unstable equilibrium (e.g,
bucking of beam) or neutral equilibrium of the system, the equation
of equilibrium can be obtained by setting the first variation of the
above lagrangian equal to zero, that is, from the stationarity con-
dition. Hence, to obtain the Euler—Lagrange equations (i.e., equi-
librium equations), we use the stationarity condition 6L =0 to
obtain the following relations (see Appendix for the detail
derivations):

! The functions @\7/ and ¢ of the RHS of Eqgs. (1)—(3), respectively, represent
various functions with different functional dependence of the same physical
quantity, that is, the potential energy stored in the body during deformation, y. We
note that ¢ in the RHS of Eq. (3) also represents the functional.
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