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We study electromechanical macroscopic instabilities in dielectric elastomer (DE) composites under-
going finite strains in the presence of an electric field. We identify the unstable domains for DE com-
posites with periodically distributed circular and elliptical inclusions embedded in a soft matrix. We
analyze the influence of the applied electric field and finite strains, as well as the microstructure
geometrical parameters and material properties, on the stability of the DE composites. We find that the
unstable domains can be significantly tuned by an electric field, depending on the electric field direction
relative to pre-stretch and microstructure. More specifically, the electric field aligned with the stretch
direction, promotes instabilities in the composites, and the electric field applied perpendicularly to the
stretch direction, stabilizes the composites. Critical stretch decreases with an increase in the volume
fraction of circular inclusions. An increase in the contrast between the dielectric properties of the con-
stituents, magnifies the role of the electric field, while an increase in the shear modulus contrast results
in a less stable DE composite. For periodic DE composites with elliptical inclusions, we find that the
critical stretch depends on the inclination angle of the inclusion, and that the critical stretch reaches a
unique maximum at an angle defined by the inclusion ellipticity aspect ratio. In the aligned case — when
the longest side of the inclusion is aligned with the stretch direction — an increase in the ellipticity ratio

results in an increase in critical stretch.

© 2017 Elsevier Masson SAS. All rights reserved.

1. Introduction

Dielectric elastomers (DEs) can achieve large deformations
when excited by an electric field (Pelrine et al., 1998, 2000b, 2000a).
This ability, together with their lightweight, fast response time and
flexibility, make DEs attractive for a wide and diverse variety of
applications, such as artificial muscles (Bar-Cohen, 2001), energy-
harvesting and noise canceling devices, soft robotics (Kornbluh
et al.,, 2012; McKay et al., 2010; Carpi et al., 2011; Bortot et al.,
2016), and tunable waveguides (Gei et al., 2011; Galich and
Rudykh, 2016). However, the wide spread usage of DEs has been
limited due to the extremely high electric fields required to achieve
large strains. Thus, DEs need to operate at the risky edge of elec-
tromechanical instabilities (Plante and Dubowsky, 2006; Rudykh
et al., 2012; Keplinger et al., 2012; Li et al., 2013). A promising
approach for reducing the required electric field is to design and
fabricate composite materials with an enhanced electromechanical
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coupling. Experimental studies show significant enhancements in
the electromechanical coupling in DE composites (Stoyanov et al.,
2011; Huang and Zhang, 2004). Moreover, theoretical estimates
and numerical simulations (Tian et al., 2012; Rudykh et al., 2013)
predict even more significant improvements in the performance of
DE composites with periodic microstructures. Thus, improvement
by orders of magnitude in the electromechanical coupling can be
achieved in hierarchically structured composites comprising softer
and stiffer phases (Rudykh et al., 2013). Recent advances in the
microstructured material fabrication and 3D printing, allowing
realization of highly structured materials at different length-scales
(Kolle et al., 2013; Lee and Fang, 2012; Zheng et al., 2014; Slesarenko
and Rudykh, 2016), provide a great perspective for this approach for
enhancing DE performance.

The foundation for the non-linear electroelasticity theory was
laid by the pioneering works by Toupin (1956, 1960) showing
that electromechanical coupling in DEs is characterized by a
quadratic dependence on the applied electric field. Recently, the
electroelasticity theory of finite deformations has been refor-
mulated by Dorfmann and Ogden (2005, 2010), McMeeking and
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Landis (2005), and Suo et al. (2008); Zhao and Suo (2010), and,
more recently, by Liu (2013), and by Li et al. (2016). Itskov and
Khiem (2014) and Ortigosa and Gil (2016) considered the as-
pects of the convexity of the electro-elastic energy functions.
Cohen et al. (2016), Cohen and deBotton (2016) conducted a
statistical-mechanics-based analysis of the response of polymer
chain networks in DEs. In parallel, significant efforts have been
made towards the development and implementation of the non-
linear electroelasticity framework into numerical schemes (Vu
and Steinmann, 2007; Volokh, 2012; Javili et al.,, 2013; Keip
et al, 2014; Galipeau et al., 2014; Jabareen, 2015; Aboudi,
2015). The electromechanical instabilities in finitely deformed
homogenous DEs have been analyzed by Zhao and Suo (2007),
and Dorfmann and Ogden (2010, 2014), in parallel with the
experimental observations of the failure modes such as pull-in
instabilities (Plante and Dubowsky, 2006), creasing and surface
patterning (Wang et al., 2011). Based on an exact analytical so-
lution available for finitely deformed periodic layered DE com-
posites, the studies of the electromechanical instabilities in the
periodic DE laminates have been performed (Bertoldi and Gei,
2011; Rudykh and deBotton, 2011; Rudykh and Bertoldi, 2013;
Rudykh et al.,, 2014). These works show the significant depen-
dence of DE material stability on the applied electric field and
pre-stretch. However, the set of microstructures for which exact
analytical solutions can be derived is limited; as a result, very
little is known about the instabilities in DE composites with
particulate and periodic microstructures, which showed prom-
ising results of significant enhancement in electromechanical
coupling and actuation (Rudykh et al, 2013). Moreover, the
knowledge about the instabilities in these microstructured
electro-active composites may provide the tools for designing
materials with switchable functionalities (Bertoldi et al., 2008;
Bertoldi and Boyce, 2008; Krishnan and Johnson, 2009; Rudykh
and Boyce, 2014; Singamaneni et al., 2008; 2009).

In this study, we perform an analysis of electromechanical
instabilities in finitely deformed DE composites with periodically
arranged active particles embedded in a matrix. In particular, we
focus on the macroscopic stability of periodic two-dimensional
DE composites with circular and elliptical inclusions. We imple-
ment the electromechanical instability analysis into a numerical
finite element based tool, and identify the unstable domains for
finitely deformed DE composites in the presence of an electric
field. We analyze the influence of the electric field, pre-stretch,
microstructure and material parameters on DE composite
stability.

The work is structured as follows: Sec. 2 presents the theoretical
background for the finitely deformed dielectric elastomers and
electromechanical instability analysis previously developed by
Dorfmann and Ogden (2005, 2010) and its specification for a plane
problem reported in Rudykh et al. (2014). The numerical simula-
tions, including the electromechanical periodic boundary condi-
tions, and the procedure for determination of the electroelastic
moduli are described in Sec. 3. In Sec. 4, we apply the stability
analysis to identify the unstable domains for the DE composites
with periodically distributed circular (4.1) and elliptical (4.2) in-
clusions embedded in a matrix. Sec. 5 concludes the paper with a
summary and a discussion.

2. Theoretical background

We denote by % and . the regions occupied by a body in the
reference and current configurations, respectively. The Cartesian
position vector of a material point in the reference configuration of
a body is X and its position vector in the deformed configuration is
x. We introduce a mapping vector function x such that

x = x(X). (1)

The deformation gradient is defined as

x(X)
ox -
The ratio between the volumes in the current and reference
configurations is | = detF > 0.
We consider a quasi-static deformation in the absence of a
magnetic field, electrical charges or electric currents within the
material. Consequently, Maxwell equations take the form

F= (2)

DivD® =0 and CurlE® =0, (3)

where DY is the electric displacement and E? is the electric field in
the reference configuration. Note that Div(-) and Curl(-) are the
differential operators in the reference configuration, while div(-)
and curl(-) denote the corresponding differential operators in the
current configuration. The referential electric field and electric
displacement are related to their counterpart in the deformed
configuration (Dorfmann and Ogden, 2005, 2010) via

EC=F'E and D°=JF'D. (4)

We follow the analysis proposed by Dorfmann and Ogden (2005,
2010) and consider the elastic dielectrics whose constitutive rela-
tion is given in terms of a scalar-valued energy-density function
W(F, E®) such that

_ 9W(F,E?) and DO — oW (F,E°)

P oF o 9E0

(5)

where P is the total nominal stress tensor. The corresponding
equations for an incompressible material are

_ OW(F,E?)
~ OF

oW (F,E°)

P
9E°

—pF T and D°= . (6)

where p is an unknown Lagrange multiplier. For an isotropic elec-
troelastic material, an energy-density function ¥ can be expressed
as a function of the six invariants

IP(F, EO) = U(I;. I, I3, Lap, Ise, Ige). (7)
where

I =TIC, I — % (2 -10€). I =detc, 8)
Ie =E%E%, s, =E°.C'E°, Ig =E°-C2E°, (9)

where C=F'F is the right Cauchy-Green strain tensor. In the
absence of body forces the equilibrium equation takes the form

DivP = 0. (10)

The equilibrium equation in the current configuration is
divT = 0, (11)

where the Cauchy stress tensor is related to the first Piola-Kirchhoff
stress tensor via T = J~1PF'.

Next we analyze small amplitude perturbations superimposed
on the finitely deformation and electric field (Dorfmann and Ogden,
2010). The corresponding incremental equations are
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