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a b s t r a c t

Simplified isotropic models of strain gradient elasticity are presented, based on the mutual relationship
between the inherent (dual) gradient directions (i.e. the gradient direction of any strain gradient source
and the lever arm direction of the promoted double stress). A class of gradient-symmetric materials
featured by gradient directions obeying a reciprocity relation and by 4 independent h.o. (higher order)
coefficients is envisioned, along with the sub-classes of hemi-collinear materials (3 h.o. coefficients,
gradient directions in part coincident), collinear materials (2 h.o. coefficients, equal gradient directions)
and micro-affine materials (1 h.o. coefficient, behavioral affinity at micro- and macro-scale, coincident
with the Aifantis model). All models comply with the energy positive definiteness conditions. The
boundary-value problem for the wide class of gradient-symmetric materials is governed by a set of
PoissoneHelmholtz type differential equations almost unaffected by the number of independent h.o.
coefficients; instead the boundary conditions carry in, in general, problem-dependent computational
difficulties increasing with the number of these coefficients. As an application, gradient-symmetric beam
models are discussed. A parallel hierarchy of simplified isotropic models with couple stresses is also
presented, in which the novel concept of rotational volumetric strain gradient is exploited. A graphical
overview on isotropic strain gradient elasticity models is reported. An Appendix is devoted to the con-
cepts of extensional and rotational volumetric strain gradients and to the related pressure-like stresses.

© 2016 Elsevier Masson SAS. All rights reserved.

1. Introduction

Strain gradient elastic material models are of increasing interest
for research and engineering application purposes. The main fea-
tures of these models reside in the h.o. (higher order) material
coefficients (or constants), whichmake them capable to predict and
describe a number of real phenomena arising from the material
inhomogeneities, or from the specimen small scale dimensions (as
for example size effects, strain localization, dispersion effects in
wave propagation, stress and strain singularities at the crack tips,
and the like). Generalized continua theories, and in particular
gradient elasticity theories, distinguish themselves from classical
theories because of the internal length scale parameter(s) encom-
passed within the inherent h.o. coefficients, with dimension com-
parable to the internal length characteristics of the material (as,
typically, particle size). This fact makes generalized continuum
theories capable to capture small scale phenomena that instead

would remain undetected, or detected as stress and strain singu-
larities, within the framework of classical theories. There is an
extensive literature concerned with this subject, for which we refer
to Germain (1973a, b); Askes and Aifantis (2011); Vardulakis et al.
(1996); Fleck and Hutchinson (1997); Lam et al. (2003); dell'Isola
et al. (2009); Javili et al. (2013); Auffray et al. (2013) and the liter-
ature therein.

A serious obstacle to the exploitation of the above enhanced
material models comes up from the absence of an adequate qual-
itative and quantitative knowledge of the inherent constitutive
behavior, apart from a number of experimental studies as Fleck
et al. (1994); Ma and Clark (1995); Nix (1989); Stelmashenko
et al. (1993); Stolken and Evans (1998); Poole et al. (1996); Lam
et al. (2003); Tang and Alici (2011). The latter experimental works
provided an important preliminary view on the constitutive
behavior of this class of materials, but a rather expensive program
of laboratory experiments, paralleled by a complete knowledge of
the underlining mechanics, would be necessary. Meanwhile, the
formulation of gradient elasticity theories based on a reduced
amount of h.o. coefficients (less than five, the number at most
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required in the case of isotropy), constitutes a paramount task, to
which the present paper is devoted.

After the pioneering works of Cauchy (1851), Voigt (1887),
Cosserat and Cosserat (1909), theories of strain gradient elasticity
were advanced by Casal (1961, 1963); Mindlin (1964, 1965); Green
and Rivlin (1964a, b); Kr€oner (1967); Mindlin and Eshel (1968). For
the present purposes, of particular interest is the latter paper,
where a first strain gradient elasticity theory is advanced for an
isotropic material. The starting point of the latter paper is dlike in
(Mindlin, 1965) where a second strain gradient theory is
advancedd a strain energy function depending on the standard
strain, ε, as well as on a set of 18 higher order strain measures
coinciding with: either the second gradients of the displacements,
VVu, (Form I), or the first gradient of the strain, Vε, (Form II), or
even the symmetric part (or stretch gradient) VεS (10 components)
and the gradient of the continuum rotation Vq (8 components),
(Form III). The latter three forms are shown to be substantially
equivalent to one another, whereas Form III is shown to constitute a
generalization of the classical couple stress theory, similar to one
given by Toupin (1962, 1964), which describes the effects of the
stretch gradient, VεS, and of the rotation gradient, Vq.

An important contribution to the development of strain gradient
elasticity was given by Germain (1973a, b), who addressed the
equilibrium problem of first strain gradient continua with micro-
structure (or micromorphic materials) by means of the principle
of virtual power and provided basic guidelines unifying the previ-
ous contributions by Toupin (1962, 1964); Mindlin (1964, 1965);
Green and Rivlin (1964a, b). A further contribution was given by
Wu (1992), who applied the second strain gradient elasticity theory
by Mindlin (1965) to surface tension phenomena. Fleck and
Hutchinson (1993, 1997), inspired by Toupin (1962) and Mindlin
(1964, 1965), addressed isotropic incompressible materials and
employed an ad-hoc orthogonal decomposition (previously
devised by Smyshlyaev and Fleck (1996)) of the strain gradient
tensor carrying in three independent length scale parameters. Fried
and Gurtin (2006) formulated a first strain gradient elasticity the-
ory including first velocity gradient inertia and showed the
appearance of surface inertia forces in addition to suitably
enhanced bulk inertia forces. dell'Isola et al. (2009) provided an
extension to finite deformations of a first strain gradient elasticity
theory for isotropic materials with the inherent generalized Hooke
law. Polizzotto (2012, 2013) used mixed strain gradient/velocity
gradient material models to point out some typical boundary ef-
fects consisting in the formation of surface layers and edge lines,
each of which obeys specific (membrane-like, or rode-like) equi-
librium equations in the presence of, respectively, surface and line
body forces. Javili et al. (2013) addressed higher order gradient
elasticity in the presence of surface and edge line energy densities,
and established a sort of hierarchy in the existence of various forms
of energy densities. Auffray et al. (2013) addressed strain gradient
elasticity in the case of anisotropic materials and provided a matrix
representation of the inherent constitutive equations.

Aside the above research line mainly oriented toward questions
of theoretical formulations, another parallel research line devel-
oped oriented toward application purposes and thus more con-
cerned with simplified material models, that is, featured by a
reduced number of h.o. coefficients. Aifantis and co-workers
(Aifantis, 1992; Altan and Aifantis, 1992; Ru and Aifantis, 1993),
probably inspired by Casal (1961), advanced a material model with
only one h.o. coefficient featured by a stress-strain relation in the
form of Helmholtz PDEs (partial differential equations) as
s¼C:(ε�[2Dε), where C is the usual moduli tensor of isotropic
elasticity, D the Laplacian differential operator and [ is a length
scale parameter. Polizzotto (2003) and Gao and Park (2007)
improved this model by means of a variational procedure leading

to the exact form of the extra boundary conditions. In spite of the
drastic reduction of the number of h.o. coefficients, the proposed
model proved to be capable to predict and describe, more or less
adequately, a wide extent of physical phenomena, typically
exhibited by real materials, but not detectable by means of the
classical model. This fact was probed by a rich amount of applica-
tions within both statics and dynamics, for which reference is made
to Lazar andMaugin (2005); Lazar et al. (2006); Gao andMa (2010),
along with the review paper by Askes and Aifantis (2011).

Another gradient elasticity model, also motivated by Casal
(1961), is the one proposed by Vardulakis and Sulem (1995) in
which, beside the strain and strain gradient effects, also their
interaction effects are taken into account. This model, anisotropic in
nature, is featured, beside a scale parameter like that pertaining to
the isotropic model by Aifantis (1992), a director vector specifying
the amplitude and the preferred direction in which the mentioned
interactions manifest themselves at every point. The model in
question has been used for applications within soil mechanics,
fracture mechanics, wave propagation and in general to problems
in which the surface tension may play a notable role, see e.g.
Vardulakis and Sulem (1995); Exadactylos and Vardulakis (1998);
Exadactylos et al. (1996); Exadactylos and Vardulakis (2001). A
strain gradient isotropic elasticity model for couple stresses
featured by only three h.o. coefficients was proposed by Lam et al.
(2003) under the assumption that the strain energy is independent
of the anti-symmetric part of the rotation gradient. More recently,
Gusev and Lurie (2015) formulated a simplified isotropic model of
strain gradient elasticity in which an additional symmetry condi-
tion is used by which the h.o. coefficients are drastically reduced to
only two. Zhou et al. (2016) presented a formulation whereby the
sixth-order moduli tensor is transformed into one with only three
material constants.

The literature review, not at all exhaustive, presented above
shows how the knowledge of the h.o. coefficients is insufficient
today. For laboratory experiments and application purposes, but
not only, it would be desirable that, within the class of isotropic
strain gradient elastic materials, there may exist a hierarchy of
constitutive models encompassed between the simplest one by
Aifantis (one h.o. coefficient) and the general one (five h.o. co-
efficients), with every intermediate model being motivated by
physically clear assumptions. Indeed, this is the goal of the present
paper, in which the formulation based on Form II by Mindlin and
Eshel (1968) is followed and the tensor isotropy theory is applied.
Starting from the general isotropic model with five h.o. coefficients,
a hierarchy of simplified models is derived by enforcing some extra
symmetry conditions as the gradient symmetry and gradient
collinearity conditions herein envisioned.

An analogous hierarchy of simplified models involving stretch-
ing and couple stresses is also presented, which includes the classic
couple stress models studied by Toupin (1962, 1964); Mindlin and
Tiersten (1962) along with the simpler models with two con-
stants studied by Koiter (1964) and by Sokolowski (1970). The
above formulations show the role played by the (non-standard)
“rotational” volumetric strain gradient, equivalent to the skew-
symmetric part of the curvature.

A featuring point of the present work is in fact concerned with
the volumetric strain gradient, which is found to be of two different
types, that is, the extensional one coinciding with what is usually
intended for volumetric strain gradient, and the rotational one
arising from the rotation gradient.

The paper is organized as follows. In Section 2, some basic no-
tions of tensor isotropy theory are reported for subsequent use,
with particular concern to a sixth order tensor. The essential higher
order deformation modes of the material are pointed out together
with the corresponding response modes. In Section 3, an
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