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a b s t r a c t

We study the transient elastic field induced by an edge dislocation near a nanosized circular elastic
inhomogeneity in which the effects of interface slip and diffusion are incorporated into the model of
deformation. Separate Gurtin-Murdoch surface elasticities are specified on the surface of the in-
homogeneity and on the adjoining surface of the surrounding matrix. In addition, rate-dependent
interface slip and diffusion are assumed to occur concurrently on the inhomogeneity-matrix interface.
The ensuing interaction problem is solved using a simple yet effective method based on analytic
continuation and a convenient decomposition of the proposed solution. In particular, our method allows
us to circumvent the second-order tangential derivative taken with respect to the interfacial normal
stress, typically a source of additional complication and often an obstacle to the solution of such prob-
lems. The original problem is reduced to two coupled linear algebraic equations and a number of
mutually independent sets of state-space equations, the general solutions of which can be obtained by
solving the associated generalized eigenvalue problem. The image force acting on the edge dislocation is
derived using the Peach-Koehler formula. Corresponding stress and displacement fields as well as the
image force are found to be dependent on four size-dependent dimensionless parameters (arising from
the surface elasticities) and on two size-dependent parameters (having the dimension of time) arising
from the incorporation of interface slip and diffusion and they evolve with an infinite number of size-
dependent relaxation times.

© 2016 Elsevier Masson SAS. All rights reserved.

1. Introduction

The interaction between dislocations and second-phase in-
homogeneities plays an important role in the creep behaviors of
composites and polycrystalline solids (Srolovitz et al., 1984; Wei
et al., 2008). When the dimensions of the inhomogeneity lie in
the nanometer range, the following two main factors take on major
significance in the modelling and analysis of nanostructured solids.
The first concerns the contribution of surface/interface stresses,
tension and energies (Sharma and Ganti, 2004). These surface ef-
fects can be incorporated into continuum-based models by using
the surface/interface model of Gurtin and Murdoch (Gurtin and
Murdoch, 1975, 1978; Gurtin et al., 1998). The Gurtin-Murdoch
surface elasticity model is equivalent to the assumption of a thin

and stiff two-dimensional membrane perfectly bonded to the sur-
face of a three-dimensional bulk (Steigmann and Ogden, 1997;
Chen et al., 2007; Antipov and Schiavone, 2011; Markenscoff and
Dundurs, 2014). The second major factor requiring consideration
in nanostructured solids is rate-dependent interface slip and
diffusion (Wei et al., 2008). Interface slip can be seen as local
diffusion on a length scale comparable to the size of the asperities
of the interface (Raj and Ashby, 1971), whilst long range interface
diffusion is driven by the gradients of the chemical potential on the
interface (Herring, 1950). Interface slip and diffusion contribute to
room temperature plastic deformations in nanocrystalline mate-
rials. The co-existence of interface slip and diffusion makes the
ensuing analysis extremely challenging even in the absence of
surface elasticity (Wang and Pan, 2010, 2011).

This paper endeavors to consider the coupled effects of surface
elasticity, interface slip, interface diffusion and dislocation emis-
sion/absorption on the transient deformations of nanostructured
materials. More specifically, we investigate the elastic interaction
between an edge dislocation and a nanosized circular
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inhomogeneity. The inhomogeneity and the matrix are first
endowed with separate and distinct surface elasticities and are
then bonded through an imperfect interface permitting rate-
dependent slip and diffusion. An analytical solution in series form
to this interaction problem is derived bymeans of complex variable
methods. In contrast to the previous analysis in Wang and Pan
(2010, 2011), we propose a simple yet effective method based on
analytical continuation and a convenient decomposition of the
solution which allows us to circumvent the involvement of the
second-order tangential derivative (taken with respect to interfa-
cial normal stress) normally appearing in the description of inter-
face diffusion. This method has been adopted in a recent analysis of
a nanosized circular inhomogeneity with interface slip and diffu-
sion in the case when the surrounding matrix is subjected to uni-
form remote stresses (Wang et al., 2016). The time-dependent
image force acting on the edge dislocation is then obtained using
the acquired solution and the Peach-Koehler formula (Dundurs,
1969). We also present the asymptotic expression for the image
force when the dislocation is located far from the inhomogeneity.
Our analysis indicates that the stress and displacement fields in the
composite as well as the normalized image force acting on the edge
dislocation are dependent on four size-dependent dimensionless
parameters g1; g2; d1; d2 arising from the surface elasticities and
on two size-dependent parameters r; c (having the dimension of
time) arising from interface slip and diffusion and they evolve with
an infinite number of relaxation times. These relaxation times rely,
in turn, on the two size-dependent dimensionless parameters
g1; g2 (arising from the surface elasticities) and on the two size-
dependent parameters r; c associated with interface slip and
diffusion. Due to the existence of residual surface tensions, the
normalized image force acting on a climbing dislocation, the Bur-
gers vector of which is directed tangentially to the interface, is no
longer an odd function of the dislocation position parameter and is
actually dependent on a further size-dependent parameterwhich is
given by the ratio of the radius of the inhomogeneity to the Burgers
vector. We also present long range interaction results both in time
and in space.

2. The coupled bulk-surface elasticity, interface slip and
diffusion

In this section, the basic formulations describing the bulk elas-
ticity, the surface elasticity and interface slip and diffusion are
briefly summarized.

2.1. The bulk elasticity

In what follows, unless otherwise stated, Latin indices i,j,k take
the values 1,2,3 andwe sum over repeated indices. In the absence of
body forces, the equilibrium equations and the stress-strain law
describing the deformation of a linearly elastic, homogeneous and
isotropic bulk solid can be expressed in a fixed rectangular coor-
dinate system fxig as follows

sij;j ¼ 0; sij ¼ 2mεij þ lεkkdij; εij ¼
1
2
�
ui;j þ uj;i

�
; (1)

where l and m are Lame constants, sij and εij are, respectively, the
Cartesian components of the stress and strain tensors in the bulk
material, ui is the i-th component of the displacement vector and dij
is the Kronecker delta.

For plane-strain problems, the stresses, displacements and
stress functions 41; 42 can be expressed in terms of two analytic
functions f(z) and jðzÞ of the complex variable z ¼ x1 þ ix2 as
(Muskhelishvili, 1953; Ting, 1996)

s11 þ s22 ¼ 2
�
f0ðzÞ þ f0ðzÞ

�
;

s22 � s11 þ 2is12 ¼ 2
h
zf

00 ðzÞ þ j0ðzÞ
i
;

2mðu1 þ iu2Þ ¼ kfðzÞ � zf0ðzÞ � jðzÞ;
41 þ i42 ¼ i

�
fðzÞ þ zf0ðzÞ þ jðzÞ

�
;

(2)

where k ¼ 3� 4n and n ð0 � n � 1=2Þ is Poisson's ratio. In addition,
the stresses are related to the stress functions through (Ting, 1996)

s11 ¼ �41;2; s12 ¼ 41;1;
s21 ¼ �42;2; s22 ¼ 42;1:

(3)

Let T1 and T2 be traction components along the x1-and x2-di-
rections on a boundary L. If s is the arc-length measured along L
such that thematerial remains on the left-hand side in the direction
of increasing s, it can be shown that (Ting, 1996)

T1 þ iT2 ¼ �dð41 þ i42Þ
ds

: (4)

2.2. The surface elasticity

The equilibrium conditions on the surface incorporating inter-
face/surface elasticity can be expressed as (Gurtin and Murdoch,
1975, 1978; Gurtin et al., 1998; Ru, 2010)�
sajnjea

�þ ssab;bea ¼ 0; ðtangential directionÞ�
sijninj

� ¼ ssabkab; ðnormal directionÞ (5)

where ni are the components of the unit normal vector to the
surface, ½*� denotes the jump of the respective quantity across the
surface, ssab are the Cartesian components of the surface stress
tensor and kab is the curvature tensor of the surface. In addition, the
constitutive equations on the isotropic surface are given by

ssab ¼ s0dab þ 2ðms � s0Þεsab þ ðls þ s0Þεsggdab; (6)

where ε
s
ab

are the components of the surface strain tensor, s0 is the
surface tension and ls and ms are the two surface Lame constants.

We mention that in Eqs. (5) and (6), the Greek indices a, b and g

take on values of the surface components. For example, in the case
of circular cylindrical fibers, a, b, g each take on the values q, z.

2.3. Interface slip and diffusion

Let ur and uq be the components of the displacement vector,
normal and tangential, respectively, to the inhomogeneity-matrix
interface L and srr ,srq the normal and shear components, respec-
tively, of the traction along the interface L. The interface slip and
interface diffusion boundary conditions can then be explicitly
expressed as (Koeller and Raj, 1978; Sofronis andMcMeeking,1994;
Kim and McMeeking, 1995; Onaka et al., 1998; Wei et al., 2008)

½srr þ isrq� ¼ 0; srq ¼ w½ _uq�; D
d2srr
ds2

¼ �½ _ur �; on L; (7)

where the overdot denotes differentiation with respect to time t, w
is the non-negative interface drag constant, D is the non-negative
interface diffusion constant, and ½*� ¼ ½*�M � ½*�I describes the
jump across L. The definition of s in Eq. (7) is the same as that in Eq.
(4). The interface slip is absent when w/∞; the interface diffusion
is absent when D ¼ 0; the interface slip occurs much faster than the
interface diffusionwhen w ¼ 0; the interface diffusion occurs much
faster than the interface slip when D/∞. The appearance of the
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