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a b s t r a c t

This paper describes the development of high fidelity solutions for the study of homogeneous (elastic
and inelastic) spherical shells subject to dynamic loading and undergoing finite deformations. The goal of
the activity is to provide high accuracy results that can be used as benchmark solutions for the verifi-
cation of computational physics codes. The equilibrium equations for the geometrically non-linear
problem are solved through mode expansion of the displacement field and the boundary conditions
are enforced in a strong form. Time integration is performed through high-order implicit RungeeKutta
schemes. Accuracy and convergence of the proposed method are evaluated by means of numerical ex-
amples with finite deformations and material non-linearities and inelasticity.

© 2016 Elsevier Masson SAS. All rights reserved.

1. Introduction

Multi-physics codes are used by research institutions to solve
important problems in solid and fluid mechanics. Verifying the
accuracy of the numerical simulations is thus of paramount
importance. One verification technique is to develop analytic so-
lutions to test problems and compare the numerical results of a
computational physics code to the analytic solution. Analytic so-
lution typically require simplifying hypothesis to reduce the
complexity of the problem. For example, problems involving
spherical shells, due to their simple geometry, have been a topic of
long-term interest in solid mechanics (Sharpe, 1942; Blake, 1952)
(see (Kamm et al., 2008) for a comprehensive overview).

For the dynamic response of solids, when finite strains and
material inelasticity are accounted for, common assumptions that
are necessary to derive an analytic solution are incompressibility
and elastic-perfectly plastic material behavior (Sharpe, 1942; Blake,
1952; Verney, 1968; Xin-Lin, 1994; Cohen et al., 2010; Katzir and
Rubin, 2011; Rapoport et al., 2011). Incompressibility and/or
particular initial or boundary conditions may be challenging to be
modeled in a general purpose solid mechanics code and hence

comparison of the computational solution to the analytic one may
be difficult. For the aforementioned reasons, this work deals with
the formulation of a numerical method that affords high-fidelity
and high-accuracy solution. Moreover, due to its flexibility, the
developed method lends itself to produce reference solutions for
test cases that can be easily reproduced in large computational
mechanics codes.

This paper may be regarded as an extension of (Williams et al.,
2005; Kamm et al., 2010; Chabaud et al., 2012, 2013a, 2013b, 2015)
to the finite deformation and finite strain case. Analogies with the
previous works may be found in the truncated modal series
expansion of the displacement field, in the method employed to
derive the weak form of the governing equations and in the strong
enforcement of the boundary conditions at the inner and outer
radii. Nonetheless, the method described herein differs substan-
tially from the one used in the small deformation case because
eigenfunctions obtained from the homogeneous solution of the
small deformation case are not solutions of the equilibrium equa-
tions in presence of finite deformations. Therefore, a Chebyshev
polynomial expansion is used in place of the truncated series of
eigenfunctions. Chebyshev polynomials also offer numerical ad-
vantages because spatial integration is exact whereas integration of
eigenfunctions, based on Bessel functions, poses severe challenges
since numerical cancellation reduces integration accuracy for high
order modes (Iserles et al., 2006; Chen, 2015).
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In the geometrically linear case (Williams et al., 2005; Kamm
et al., 2010; Chabaud et al., 2012, 2013a, 2013b, 2015) an analytic
expression for the evolution of the kinematic variables is derived.
When material inelasticity is accounted for (Williams et al., 2005;
Chabaud et al., 2013b, 2015), the inelastic contributions are
collected within the eigen-stress vector and an iterative proced-
ure is used to compute the converged equilibrium solution for
each time increment. Although in the finite deformation case an
analytic solution for the evolution of acceleration, velocity and
displacement does not exist, it would be possible to extend the
approach used for the small deformation to the geometrically
non-linear case. The eigen-stress fields may collect the non-linear
contributions arising from material inelasticity and geometric
non-linearities and an iterative solver may be used to obtain the
converged equilibrium solution. Although viable, this approach is
abandoned in favor of numerical time integration which affords
higher accuracy, higher convergence order and does not require
the computation of the eigen-functions based on the Bessel
functions.

An implicit RungeeKutta (IRK) scheme is chosen to evolve the
kinematic variables: accelerations and velocity increments during
a time-step are expressed as functions of the displacement
increment and the resulting non-linear system of equations in
solved, for the displacement variables, with a Newton-Raphson
iterative method. If a diagonal implicit RungeeKutta (DIRK) is
used, the time integration scheme in (Ellsiepen and Hartmann,
2001; Hartmann, 2002) is recovered. Amongst the possible IRK
schemes based on collocation methods (Hairer et al., 1993), the
stiffly accurate, A-, B- and L-stable, Lobatto IIIC scheme is
employed. Due to the displacement field interpolation and to the
coupling introduced by finite deformations, the structure of the
linearized system is dense, unlike the one obtained from finite
elements. Therefore, the additional coupling introduced by the
considered IRK scheme, does not modify the structure of the
linearized system.

The paper is structured by introducing linear momentum con-
servation for a spherical shell with spherical symmetry conditions
in Section 2. The approximation of the displacement field and the
weak form of the problem are presented in Section 3. In Section 4,
the time integration scheme employed for the evolution of the
kinematic variables is introduced. Subsequently, several hypere-
lastic material constitutive models are described in Section 5. Nu-
merical simulations involving homogeneous isotropic spherical
shells showing elastic and elasto-plastic behavior are carried out in
Section 6 to assess the performance of the present formulation in
the context of dynamic analysis. Finally, a summary and concluding
remarks are presented in Section 7.

2. Problem statement

A homogeneous spherical shell with inner radius ri and outer
radius ro is considered. A spherical coordinate system is defined
at the center of the shell and u ¼ ½ur ;uq;uf�T is the displacement
vector of every point belonging to the shell. Moreover, the initial
displacement and velocity of a point of the shell are u0 and _u0
respectively. The domain's boundary, vB 0, consists of two
disjoint subsets, vuB 0 and vsB 0, where essential (Dirichlet) and
natural (Neumann) boundary conditions, respectively, are
imposed. It should be observed that, unlike (Williams et al., 2005;
Kamm et al., 2010; Chabaud et al., 2012, 2013a, 2013b, 2015), in
the present work the boundary conditions are defined in accor-
dance with (Malvern, 1969). The problem is governed by the
principle of conservation of linear momentum, and can be stated
as follows (Malvern, 1969):

V0$Pþ b ¼ r0u
€ in B 0; (1)

u ¼ u on vuB 0; (2)

P$n ¼ h on vsB 0; (3)

u ¼ u0 at t ¼ 0; (4)

_u ¼ _u0 at t ¼ 0; (5)

where P and r0 respectively denote the first Piola-Kirchhoff stress
tensor and the mass density of the material in the initial configu-
ration. Standard transformations (Malvern, 1969) are used to map
between P and the second Piola-Kirchhoff stress, S, and between P
and the Cauchy stress, s.

Assuming spherical symmetry uq ¼ uf≡0, Sqq ¼ Sff, and
Srq ¼ Srf ¼ Sqf≡0, the problem becomes one-dimensional and, for
the sake of readability, the following simplified notation in used

u≡ur; Sr≡Srr ; Sq≡Sqq:

Furthermore, a total Lagrangian approach is employed and all
the derivatives are referred to the initial configuration (i.e. v0

v0r
≡ v
vr).

The conservation of linear momentum for a spherical shell in Car-
tesian coordinates is hence written as

r0u
€¼ 2

r
ðSr � SqÞ þ

vSr
vr

�
1þ vu

vr

�
þ Sr

v2u
vr2

� 2
r2
Squ

þ 2
r
Sr
vu
vr

inB 0; (6)

u ¼ u on vuB 0; (7)

Pr ¼ h on vsB 0; (8)

u ¼ u0 at t ¼ 0; (9)

_u ¼ _u0 at t ¼ 0; (10)

where the second Piola-Kirchhoff stress at every point is obtained
from the material constitutive model and where the body force
term has been neglected.

3. Solution method

Themethod employed to solve the balance of linear momentum
in Eq. (6) may be split in threemajor steps: (i) define an appropriate
modal basis for the approximation of the displacement field (N
modes), (ii) the equilibrium equation (6) is multiplied by the first
N � 2 modes and integrated over the shell's volume to obtain N � 2
equations and (iii) two additional equations necessary to compute
the N modal coefficients are derived directly from the boundary
conditions Eqs (7) and (8).

The displacement field is assumed to be given as truncated se-
ries expansion of N modes (Williams et al., 2005), collected within
the J vector,

u ¼ 1ffiffiffi
r

p
X
i¼1

N

qiJi ¼
X
i¼1

N

qiJi; (11)

where the vector of unknown coefficients, q, defines the modes'
amplitude and the 1=

ffiffiffi
r

p
factor is introduced for consistency with

(Williams et al., 2005). Hereafter, a polynomial basis built with the
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