Accepted Manuscript

Three dimensional static analysis of viscoelastic FGM cylindrical panel using state space differential quadrature method

Hossein Norouzi, Akbar Alibeigloo

PII: S0997-7538(16)30316-3

DOI: 10.1016/j.euromechsol.2016.10.001

Reference: EJMSOL 3361

To appear in: European Journal of Mechanics / A Solids

Received Date: 9 November 2015
Revised Date: 13 September 2016

Accepted Date: 3 October 2016

Please cite this article as: Norouzi, H., Alibeigloo, A., Three dimensional static analysis of viscoelastic FGM cylindrical panel using state space differential quadrature method, *European Journal of Mechanics / A Solids* (2016), doi: 10.1016/i.euromechsol.2016.10.001.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Three dimensional static analysis of viscoelastic FGM cylindrical panel using state space differential quadrature method

Hossein Norouzi, Akbar Alibeigloo*

Mechanical Engineering Faculty, Tarbiat Modares University, Tehran, Iran

ABSTRACT

Based on 3D elasticity theory, static analysis of viscoelastic cylindrical panel made up of functionally graded material (FGM) and subjected to transverse uniform pressure is performed. Analytical solution presented, using state space method and Fourier expansion for simply supported edges, and semi-analytical approach by state space differential quadrature method (DQM) used for other boundary conditions. Field equations are solved in Laplace domain and results are transferred back to time domain numerically by Laplace inverse technique. In this investigation relaxation modulus of panel is assumed to obey Prony series form and varies in accordance to power law along the radial direction due to inhomogeneous property of FGM across the thickness. Numerical results for elastic cylindrical panel are compared with published results to validate exactness and accuracy of the present approach. In numerical illustration displacement and stress fields are studied. Moreover, effect of relaxation time constant, boundary conditions, mid-radius to thickness ratio and power law index on bending behavior of viscoelastic cylindrical panel are investigated.

^{*}Corresponding author Address: Tel: (+98)-21-82883991; Fax: (+98)-21-82883991; *E-mail address*: abeigloo@modares.ac.ir(A. Alibeigloo)

Download English Version:

https://daneshyari.com/en/article/5014372

Download Persian Version:

 $\underline{https://daneshyari.com/article/5014372}$

Daneshyari.com