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a b s t r a c t

We present a thickness-extensible finite strain quadrilateral element based on least-squares in-plane
shear strains and assumed transverse-shear strains. At each node, two thickness parameters are con-
nected to the constitutive laws by a linear system. The zero out-of-plane normal stress condition is
satisfied at the constitutive level using the normal strain as unknown in all integration points. Assumed
in-plane strains based on least-squares are introduced as an alternative to the enhanced-assumed-strain
(EAS) formulations and, contrasting with these, the result is an element satisfying ab-initio both the in-
plane and the transverse Patch tests. There are no additional degrees-of-freedom, as it is the case with
EAS, even by means of static condensation. Least-squares fit allows the derivation of invariant finite
strain elements which are shear-locking free and amenable to be incorporated in commercial codes.
With that goal, we use automatically generated code produced by AceGen and Mathematica. Full
assessment of the element formulation and the two-parameter thickness variation methodology is
accomplished. Alternative thickness variation algorithms are tested. All benchmarks show very
competitive results, similar to the best available enriched shell elements.

© 2016 Elsevier Masson SAS. All rights reserved.

1. Introduction

Hyperelastic and finite strain plasticity constitutive models
require precise kinematics with structural elements: length-
preserving interpolated directors and thickness variation are
essential ingredients. In addition, non-linear shell simulations with
finite elements (cf. (Areias et al., 2013a)) are demanding with
respect to numerical efficiency, Newton iteration robustness and
mesh distortion insensitivity. This is relevant in the edge-based
algorithms recently proposed (Areias et al., 2013c) when applied
to quadrilaterals. Many of the intricate element formulations, such
as enhanced-assumed-strain (EAS (Areias et al., 2003)), hybrid
stress, discrete Kirchhoff (DK, cf. (Areias et al., 2005)), are suitable
for smooth problems where the mesh distortion sensitivity is not a
crucial ingredient and governing equations do not contain

discontinuities. In addition, costs associated with convergence
difficulties and static condensation, specifically with EAS, can be
high. The same applies to meshless methods in shells (cf. (Rabczuk
and Areias, 2006; Rabczuk et al., 2007)): geometrically complex
shell problems pose difficulties with meshless methods.

Thickness variation is an important attribute for finite strains,
and in shells it is a consequence of kinematics and constitutive
laws. Often, either closed-form solutions exist, as in Hookean
elasticity or certain hyperelastic materials (cf. (Bonet and Wood,
2008)) or a two-level iteration is used. We here take a more
direct approach:

� Two thickness parameters are used, representing distances be-
tween the shell faces and the reference surface.

� A simultaneous iteration scheme for the normal strain, consti-
tutive stress correction and plastic multipliers is proposed. The
consistent tangent modulus is derived.

Coupling of thickness variation and zero normal stress condition
is not a new attribute in shell analysis. The first systematic
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treatment was performed by Hughes and Carnoy (Hughes and
Carnoy, 1983) for hyperelasticity. Although the reference surface
position was parametrized in that paper, it was considered user-
defined data. Crucially, the normal strain was integrated through
the thickness coordinate to update the thickness parameter.
Bending behavior was not inspected in detail. More recently,
Sussman and Bathe (cf. (Sussman and Bathe, 2013)) have indicated
the need for use of two thickness parameters for performing
genuine finite strain shell simulations. They also introduced
warping degrees-of-freedom to represent independent motion of
“top” and “bottom” directors. We make use of a simplified version
of Sussman and Bathe kinematics, with thickness strains being
piecewise constant instead of piecewise linear as proposed in their
work. In addition, contrasting with their work (which makes use of
plane strain constitutive laws), we use static condensation at the
constitutive level to obtain a zero normal stress constitutive law. In
the present paper we only consider initially uniform thickness,
although extension to initial varying thickness is straightforward by
use of the shape functions. Compared with other thickness-
extensible finite strain shell formulations, for example Klinkel,
Gruttmann and Wagner (Klinkel et al., 2008) where besides dis-
placements, strains and stresses are interpolated in a 3-field
formulation, the present computational costs and formulation in-
tricacy are lower. Recent corotational quadrilateral elements, cf. (Li
et al., 2013) are also more intricate. Non-corotational triangles have
been recently introduced with assumed-natural strains (ANS) by
Bathe's group, cf. (Lee et al., 2014; Jeon et al., 2014, 2015).

In terms of shell formulation, starting with a mixed functional
(displacement field, director field, components of the local Cauchy-
Green tensor in covariant/contravariant coordinates and the cor-
responding stress-like Lagrange multipliers), we discretize the
resulting Euler-Lagrange equations making use of appropriate
shape functions. A complete testing program is then performed.
The set of obstacle problems for shells are the classical plate and
shell benchmarks and extensions to finite strains. Besides thickness
variation, it is important to test elements in finite strains since some
instabilities have been found in the past (see (Crisfield and Peng,
1996) for a report with the Morley-based shell). In terms of quad-
rilateral shell element technology, some important works should
be mentioned. A milestone in the removal of transverse shear
locking was achieved with the assumed natural strain (ANS) tech-
nique in 1984 and 1986 (Dvorkin and Bathe,1984; Park and Stanley,
1986). A decade earlier, in-plane bending locking was solved in
1973 by the Wilson Q6 element (Wilson et al., 1973), with several
ulterior corrections. For undistorted meshes, convergence rate of
the results is established regardless of the incomplete higher order
terms in the polynomials (see the book by Belytschko and co-
workers (Belytschko et al., 2000)) and these higher order terms
only contribute to stability and coarse-mesh accuracy. More
recently, Ko, Lee and Bathe (Ko et al., 2016) introduced in-plane
assumed natural strains as an alternative to the Q6 enrichment in
shells. This follows an important work by Sussman and Bathe
(Sussman and Bathe, 2014) where it was proved that EAS elements
are inherently unstable in large strain conditions. In addition, mesh

Nomenclature

a assumed strain unknown parameters
Dg plastic multiplier increment
ks shear correction parameter
m+ scaling factor for the plastic multiplier
n Poisson coefficient
x curvilinear coordinates
sij, s Cauchy stress tensor
fðDS�abÞ yield function
Va gradient with respect to configuration Ua

an lower thickness parameter
bn upper thickness parameter
bi, b body force
Cab right Cauchy-Green tensor using Ua and Ub as

equilibrium and reference configurations, respectively

C+
ab mixed-variant right Cauchy-Green tensor

C tangent modulus
C linear linear tangent modulus
C +linear reduced linear tangent modulus
da unit director for configuration Ua

E elasticity modulus
Eab green-Lagrange strain using Ua and Ub as equilibrium

and reference configurations, respectively
E+
ab mixed-variant Green-Lagrange strain

[Eab]33 strain for the thickness direction
~E assumed strain (Voigt form)
~EI out-of-plane assumed strains
~EII in-plane assumed strains
F deformation gradient
hc vector of constitutive thickness parameters
hN vector of nodal thickness parameters
H0 initial thickness

Hb thickness
H+
b effective thickness function

I identity matrix
J determinant of the deformation gradient
Ja Jacobian of configuration Ua

Lw least-squares function
m13A,m13B,m23C,m23D assumed-natural strain components at

points A,B,C and D, respectively

M ¼ R
Ub

Q TQdUb

maa matrix of covariant metric coefficients for
configuration Ua

n flow vector
Nh thickness interpolation matrix
NK(x1,x2) Nodal shape functions
Q assumed strain interpolation function
ra mid-surface position
S second Piola-Kirchhoff stress tensor
Sb second Piola-Kirchhoff stress tensor using Ub as

reference configuration
Sab second Piola-Kirchhoff stress tensor using Ua and Ub as

equilibrium and reference configurations, respectively

S
0
ab second Piola-Kirchhoff stress tensor in the local frame

(Voigt form)

DS�5ab reduced Voigt form of the constitutive part of the stress
DS�ab constitutive part of the stress
T1,T5 stress projection transformation
TS(R) Stress transformation matrix
TE(R) strain transformation matrix
TE+ strain transformation matrix for the fixed frame

W
△

ext virtual power of external forces
xai , xa coordinates of a point in configuration Ua
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