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The present study aims at providing computations that can be used as reference solution to check mean-
field nonlinear homogenization models for elastoviscoplastic constituents. These computations are based
on finite element (FE) simulations of polycrystalline aggregates made of grains with hexagonal crys-
talline structure. A detailed statistical analysis has been performed for a specific grain located at the
center of the aggregate by varying its neighboring grains. Comparisons are performed at the overall and

local scales between simulations using the affine extension of the self-consistent scheme and the FE
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1. Introduction

Based on FE (Finite Element) simulations of microstructure, this
study is devoted to develop a statistical approach in order to pro-
vide computations that can be used as reference solution to assess
the accuracy of micro-mechanically based models. The full-field FE
simulations on a Representative Volume Element (RVE) are used to
calibrate micro-mechanically based constitutive models. The re-
sults are classically compared at two levels: the macroscopic level,
using (i) the volume average over all Gauss points of the RVE (ii)
and the phase scale, using the volume average over the Gauss
points of the elements having the same orientation. This work fo-
cuses only on the assessement of the studied model on the phase
level.

In the last decade, FE simulations of microstructure have been
extensively used (i) to study the texture evolution during defor-
mation processes, (ii) to predict stress/strain fields at local levels
(intergranular and intragranular) (iii) and to calibrate micro-
mechanically based constitutive models. Different techniques
have been used in the literature to generate microstructure meshes.
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The first studies in this domain have used Voronoi tesselation al-
gorithms in 2-D (Kumar and Kurtz, 1993; Watanabe et al., 2008;
Weyer et al., 2002; Lebensohn et al., 2005; Sai et al., 2006) or 3-D
(Kumar and Kurtz, 1994, 1995; Kumar et al., 1996; Barbe et al.,
2001a, b; Kuprat et al.,, 2003; Diard et al., 2005) cases using a
synthetic aggregate to provide a cubic domain. A non exhaustive
list of studies devoted to real microstructure reconstruction coming
from experimental data acquisition includes the works (Schmauder
et al., 2003; Héripré et al., 2007; Bhandari et al., 2007; Musienko
et al., 2007; Zhang et al., 2007; Zeghadi et al., 2007). A more real-
istic solution considering an RVE formed by non-truncated grains
has been proposed by (Gérard et al., 2009; Hlilou et al., 2009;
Abdeljaoued et al., 2009).

On the other hand, the classical self-consistent approach in
which the concept of grain is replaced by the concept of crystal-
lographic phase is adopted. Phases in the polycrystalline aggregate
are defined according to the crystal orientation, that is all the grains
with the same crystalline orientation belong to the same me-
chanical phase. For recrystallized alloys, the grains have equiaxed
shapes and are randomly distributed. Consequently, the autocor-
relation functions of the phases are spherical. The inclusion shape
in the auxiliary Eshelby problem is related to these microstructural
functions. The homogenization scheme assumes that each phase is
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embedded in a homogeneous effective medium (HEM), which is
the rest of the aggregate. The overall behavior is then the average of
the local behaviors over the crystallographic texture (Fig. 1). A
particular attention is paid, here, to the grain located at the center
of the aggregate. It will be referred to as CG (Central Grain). The CG
is the furthest from the surface and then is less sensitive to the
applied boundary conditions. The micro-mechanically based
constitutive models will then be scrutinized against the full-field FE
simulations for the CG. The approach can be summarized in the
following steps:

1. The crystallographic orientation of the CG is assigned to a value
between a set of selected Euler angles described in Section 3.2.

2. A random distribution of Euler angles is then assigned for the
rest of the aggregate.

3. Boundary conditions are applied to the contour of the unitary
cube as explained in Section 3.1. The mechanical response
related to the CG is finally deduced.

To meet the assumptions of the self-consistent model, it is
necessary to average the local fields of the CG. For this reason, the
procedure described above is repeated as many times as neces-
sary. The same steps, (1) to (3), are applied for a second crystal-
lographic orientation of the CG. After N FE simulations are run,
the average of strain and stress fields in the CG are calculated. The
previous methodology is schematically summarized in Fig. 2.
This procedure provides a realistic behavior of a given phase
involving grains with the same orientation, different shapes and
different neighborhoods in accordance with the self consistent
formalism.

It is worth noting that the consistency of the adopted approach
was already checked for linear elastic behavior (Priser, 2008) by
comparison with analytical solution obtained with the help of self
consistency theory. An examination of local and global stress fields
in a spherical inclusion obeying a cubic elastic behavior and
embedded in an infinite medium subjected to homogeneous strain
at infinity have demonstrated that the convergence of the FE results
to the analytic solution is achieved (Bornert et al., 2001) after 1000
realizations. A similar study was performed in the work of Castro
Moreno et al. (2012) in which the FE aggregate was subjected to
isotropic loading and to a shear loading in order to estimate the
elasticity constants (i.e. bulk modulus and shear modulus of the
HEM). Two microstructures of 343 (7 x 7 x 7) and 512 (8 x 8 x 8)
grains are used respectively. In the following, 0D342 will refer to
the microstructure of 343 grains and OD511 will refer to the
microstructure of 512 grains. A crystal plasticity material model,
taking into account the hexagonal lattice and the crystallographic
orientation, was assigned to each grain. It was shown that the FE
computations correctly predict the elasticity constants and the
stress-strain fields in the CG for two materials. The results were
assessed by comparison to analytical results given in (Berveiller,
1978).
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In the present work, FE computations using a crystal plasticity
model are performed to simulate a polycrystalline aggregate sub-
mitted to tensile, relaxation and creep loadings. The results are
compared with the predictions of a micromechanical model based
on the self-consistent affine scheme (Masson and Zaoui, 1999;
Brenner et al., 2002).

Comparable investigations can also be found in (Lebensohn
et al., 2004a, b; 2011). The paper is organized in the following
manner: The main lines of constitutive equations for the single
crystal model are recalled briefly in Section 2. In Section 3, the FE
mesh, the boundary conditions and the statistical analysis of the FE
results are presented. The constitutive equations of the affine type
formulation are recalled in Section 4. Comparisons between the
affine type model and FE simulations are shown in Section 5 for the
central grain as well as the for overall behavior. In addition to the
tensile test, which is fundamental in characterizing the mechanical
properties, focus is set on the elastoviscoplastic behavior of HCP
materials through creep and relaxation tests.

2. Constitutive equations for the single crystal

A simplified elastoviscoplastic single crystal model is used to
describe single crystal behavior. It assumes, in the framework of
small perturbation, an additive decomposition of the elastic and the
viscoplastic strain rates; the elastic part is obtained by the Hooke's
law:

& =P 4 :® §=Cé® (1)
where C is the fourth-rank tensor of elastic moduli. The so—called
resolved shear stress 7° acting on a particular slip system (s) is given
by the relation:

T=¢:m (2)

~

where ¢ is the stress tensor in the grain and m® is the orientation
tensor attributed to the slip system (s):

m5:%<15®135+135®15) 3)

n and ls are the “slip plane” normal vector and the “slip di-

rection” vector in this plane, respectively. The resolved shear stress
7° can be related to the corresponding shear rate ¥° via a power law
expression:

7 = 10 (I71) sign(r*) (4)
(To)

A specific material parameter 7o is considered for each slip
system family: basal (3 systems), prismatic (3 systems) and second-
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Fig. 1. Eshelby's problems for equiaxed polycrystals.
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