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a b s t r a c t

This paper deals with the search, via variational methods, of bounds on the overall mechanical properties
of composite materials, with the constitutive laws of the constituents governed by linear operators,
generally non-symmetric with respect to the chosen bilinear form. For these types of problems, by virtue
of a symmetrization technique derived by Tonti (1984), we provide a minimum formulation, then used to
derive bounds for the overall properties of composites having a linear time-dependent constitutive law.
Some of the examples already known in the literature prove to be special cases of the theory proposed
here, such as the results derived by Cherkaev and Gibiansky (1994) and Milton (1990), those obtained by
Rafalski (1969a, 1969b) and Reiss and Haug (1978), and those provided by Carini and Mattei (2015).

© 2016 Published by Elsevier Masson SAS.

1. Introduction

The aim of this paper is to determine bounds for the overall
mechanical properties of composites with phases having linear
time-dependent constitutive laws.

So far, most of the theoretical developments in the homogeni-
zation field have been carried out for the specific case of elastic
composites, for which the classical energetic theorems can be used.
In particular, we recall the Voigt (1889) and Reuss (1929) bounds,
and the Hashin and Shtrikman (1962, 1963) bounds.

On the other hand, very few results have been obtained for
composites with constitutive laws ruled by non-potential opera-
tors, that is non-symmetric operators with respect to a bilinear
form of the classical type. For the linear viscoelastic case we
recollect the works by Christensen (1968) and Huet (1995).

The most significant work seems to be the one by Cherkaev and
Gibiansky (1994), who provided a procedure to obtain extremum
formulations for the conductivity problem and, above all, for the
linear viscoelastic problem, in case the constitutive law operator be
expressed in terms of complex moduli. In particular, considering
the latter case, the procedure is based on the separation of the
constitutive law operator into its real and complex parts, and on the
application of a partial Legendre transform to the new split
constitutive law. Milton (1990) extended Cherkaev and Gibiansky's

method to problems ruled by non symmetric operators, by
combining the given problem with its adjoint and by applying a
partial Legendre transform to the new constitutive law.

Recently, for the linear viscoelastic problem, a new extremum
formulation has been obtained by Carini and Mattei (2015). The
latter is based on the division of the time domain into two equal
subintervals with the consequent splitting of the equations of the
problem. In particular, the constitutive law operator is split into
sub-operators and it can be written as a two-by-two matrix, sym-
metric but not positive definite with respect to a time convolutive
bilinear form. Applying a partial Legendre transform, as in the
procedure conceived by Cherkaev and Gibiansky (1994), Carini and
Mattei reformulated the problem so that the associated quadratic
form turns out to be convex. We point out that very few minimum
formulations have been presented in the time domain for a finite
time interval. In fact, other formulations valid on an infinite time
interval were proposed, for instance, by Rafalski (1969a,b), and
Reiss and Haug (1978).

In this paper, using some ideas of Tonti (1984), we provide a
method to symmetrize any type of linear constitutive law, for the
purpose of obtaining bounds of the overall properties of linear
composites. In particular, the results proposed by Cherkaev and
Gibiansky (1994) and Milton (1990), Rafalski (1969a,b) and Reiss
and Haug (1978), and Carini and Mattei (2015), obtained using
very different methods, prove to be particular cases of the approach
presented here.

In Section 2 we present an overview of the main results, derived
following the procedure presented in Section 3. The details of the
application of the method are illustrated in Section 4, while in

* In memory of Professor Osvaldo De Donato.
* Corresponding author.

E-mail address: o.mattei@unibs.it (O. Mattei).

Contents lists available at ScienceDirect

European Journal of Mechanics A/Solids

journal homepage: www.elsevier .com/locate/ejmsol

http://dx.doi.org/10.1016/j.euromechsol.2016.10.015
0997-7538/© 2016 Published by Elsevier Masson SAS.

European Journal of Mechanics A/Solids 61 (2017) 408e419

mailto:o.mattei@unibs.it
http://crossmark.crossref.org/dialog/?doi=10.1016/j.euromechsol.2016.10.015&domain=pdf
www.sciencedirect.com/science/journal/09977538
http://www.elsevier.com/locate/ejmsol
http://dx.doi.org/10.1016/j.euromechsol.2016.10.015
http://dx.doi.org/10.1016/j.euromechsol.2016.10.015
http://dx.doi.org/10.1016/j.euromechsol.2016.10.015


Section 5 the concluding remarks are presented.

2. Summary of the results

We focus our attention on Solid Mechanics problems related to
random composite media, under the hypothesis of small displace-
ments and strains. In particular, we consider the problem on the
Representative Volume Element (RVE) of a composite material with
a time-dependent constitutive law. The aim is to provide bounds on
the overall mechanical behavior of the composite, for every
moment of time t in the interval T ¼ ½0;T �, with T >0, the solid
being undisturbed for t<0.

A word about the notation may be helpful. We adopt lightface
letters to indicate scalars and boldface letters to denote vectors,
second-order and fourth-order tensors. In particular, fourth-order
tensors are indicated by capital Latin letters while lower case
Greek and Latin letters are used to indicate second-order tensors
and vectors, respectively. Double-struck symbols represent
matrices or vectors having vectors, fourth- and second-order ten-
sors as components. For vectors, second-order and fourth-order
tensors a symbolic simplified notation consisting in the mere
juxtaposition of the respective symbols with no explicit tensorial
subscripts is used. For example, Aε and εA indicate the second order
inner products Aijhkεhk and εijAijhk, respectively, whereas εAε de-
notes the quadratic form εijAijhkεhk. Furthermore, εx and xε indicate
the once contracted tensor product εijxj and xiεij, respectively,
whereas εs denotes the twice contracted tensor product εijsij.
Finally, uv indicates uivi. The indicial notation will be adopted only
if strictly necessary.

Let us denote by V the volume of the region U occupied by the
RVE, and by G the external surface, with unit outward normal n(x),
where x is the coordinate with respect to a Cartesian reference
system. Henceforth, given a generic function f(x,t), we use f ðtÞ to
indicate the volume average of f(x,t) over U:

f ðtÞ ¼ 1
V

Z
U

f ðx; tÞ dx (2.1)

Let u(x,t), ε(x,t) and s(x,t) be, respectively, the displacement,
strain and stress fields at the point x2U, at the time t2T. The
problem on the RVE (Problem P), supposed to be subject, on the
boundary, to imposed displacements of the “affine” kind, reads

Problem P

8>><>>:
div s ¼ 0 in U� T
ε ¼ sym Vu in U� T
u ¼ ε x on G� T
s ¼ L ε in U� T

(2.2)

where L is the constitutive law operator, supposed to be linear and
invertible, divs denotes the divergence of the stress field, while the
symbol sym Vu indicates the symmetric part of the gradient of the
displacement vector u(x,t).

The related homogenized constitutive law is

sðtÞ ¼ Lh εðtÞ (2.3)

with Lh the homogenized counterpart of L. We suppose that the
overall operator Lh satisfies the same properties of the operator L.

Throughout this paper, if not otherwise specified, we will use
the following non-degenerate “classical” bilinear form:

�
s; ε

� ¼ Z
T

2641
V

Z
U

sðx; tÞ εðx; tÞ dx

375dt (2.4)

As it is well-known, the symmetry of problem (2.2) with respect
to the bilinear form (2.4) depends only on the symmetry of the
constitutive law operator L. 1 In case L is symmetric with respect to
(2.4), the problem admits a “classical” variational formulation;
otherwise, some particular procedures may be applied, in order to
transform the original problem into a new one ruled by a potential
operator (see, for instance, Gurtin (1964), Rafalski (1969a,b), Magri
(1974), Leipholz (1979), Telega (1979), Tonti (1984), and Carini and
De Donato (2004)).

In this investigation, we apply the method developed by Tonti
(1984), which consists in the symmetrization of the original
problem through the introduction of a suitable symmetric “inte-
grating” operator, here called S. The advantage of the application of
Tonti's method rather than any of the other symmetrization tech-
niques is that, for any given problem, it allows one to derive not just
a variational formulation but a minimum principle, if the inte-
grating operator is chosen to be positive definite, a hypothesis we
will assume true throughout the paper. In particular, let us suppose
that S is a positive definite operator representing the constitutive
law operator of the following problem (Problem Ps):

Problem Ps

8>><>>:
div ss ¼ 0 in U� T
ε
s ¼ sym Vus in U� T
us ¼ ε

s x on G� T
ss ¼ S ε

s in U� T

(2.5)

where, generally, εsðtÞsεðtÞ.
The homogenized constitutive law of Problem Ps (2.5) reads

ssðtÞ ¼ Sh ε
sðtÞ (2.6)

where Sh is the homogenized countepart of S.
The straightforward application of Tonti's method (Tonti, 1984)

to Problem P (2.2) yields some disadvantages when bounding the
overall properties of the composite. Such drawbacks, due to the
direct relation between the variables ε(x,t) and s(x,t), expressed by
(2.2-d), are fully explained in the context of the applications of the
method (see Example 1 in Section 4). Therefore, we introduce a
new problem (Problem ~P (2.7)), generalization of the original
Problem P (2.2), so that the new unknown functions (stress and
strain fields) are not directly related, with the result of avoiding the
aforementioned shortcomings. In particular, in Example 1 in Sec-
tion 4, by virtue of a suitable choice of the new variables, Problem P
is recovered and the drawbacks concerning the related bounds are
highlighted.

Let us consider then the following new problem:

Problem ~P

8>><>>:
div t ¼ 0 in U� T
4 ¼ sym Vv in U� T
v ¼ 4 x on G� T
t� c ¼ Lð4� qÞ in U� T

(2.7)

where the composite is the same of problem P (2.2), but with an
imposed stress field c(x,t) and an imposed strain field q(x,t). Note
that, in this case, the stress and strain fields, i.e., t(x,t) and 4(x,t), are
not directly related by the operator L (due to the arbitrariness of the

1 Strictly speaking, the symmetry of the whole problem (2.2) should be consid-
ered with respect to the bilinear form (2.4) with the addition of a suitable boundary

term, such as
R
T

�
1
V

R
Gsðx; tÞ uðx; tÞnðxÞ dG

�
dt. It follows, then, that the divergence

operator applied to the stress field proves to be the adjoint operator of the sym-
metric part of the gradient of the displacement field, by considering also the ki-
nematic boundary conditions (2.2-c). However, if the constitutive law operator L is
not symmetric with respect to (2.4), also the whole problem (2.2) is not endowed
with such a property.
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