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a b s t r a c t

This paper deals with the analysis of free vibration and biaxial buckling of double-magneto-electro-
elastic nanoplate-systems (DMEENPS) subjected to initial external electric and magnetic potentials,
using nonlocal plate theory. It is supposed that the two nanoplates are bonded with each other using a
visco-Pasternak medium, and are also limited to the external elastic substrate. Hamilton's variational
principle is applied to acquire the partial differential equations of motion and corresponding boundary
conditions for three modes (out-of-phase, in-phase and one nanoplate fixed) and solved analytically to
determine clear closed-form phrase for complex natural frequencies natural frequencies and buckling
loads. Numerical examples are performed to demonstrate the changes of the vibration frequency and
buckling load ratio (NLL ) of DMEENP against to different values of the nonlocal parameters, initial external
electric and magnetic potentials, aspect ratio, damping and transverse stiffness coefficients of the
viscoelastic foundation, shear stiffness coefficient of Pasternak medium, length to thickness ratio,
nanoplate thickness and higher modes. Also, the effect of biaxial compression ratio on the buckling load
is investigated. Results of this study show that considering the interaction between two Magneto-
electro-elastic nanoplates lead to achieving greater frequencies and biaxial buckling loads. Moreover,
the influences of the nonlocal parameter become more pronounced when the half wave number, initial
external electric potential and aspect ratio increase, while the effect of the length to thickness ratio and
initial external magnetic potential has the opposite trend.

© 2016 Elsevier Masson SAS. All rights reserved.

1. Introduction

In the recent years, studies on applications of a new group of
composite materials called smart materials in engineering in-
dustries such as aerospace, automotive and biomedical engineering
have been carried out. Smart materials can considerably change
their mechanical and physical properties, in a predictable or
controllable manner under various environmental conditions.
Magneto-electro-elastic (MEE) composite materials are an impor-
tant class of smart materials combining piezoelectric and piezo-
magnetic phases. Due to the capacity of converting energy among
magnetism, electricity, or elasticity into another form, the MEE

materials are suitable for smart applications.
So far, many buckling and vibration studies on MEE macro-

structures such as beams and plates have been reported in several
literature. The Euler beammodel has been used to vibration analysis
of beam with embedded piezoelectric actuator layer for various
boundary conditions by Wang and Quek (2000). Applying finite
element approach (Kumaravel et al., 2007), investigated critical
buckling temperature and free vibration behavior of multiphase
MEE beam and considered clamped-clamped boundary condition.
Based on the Timoshenko beam theory, the exact solution for free
and forced vibration of a magneto-electro-elastic bimorph beam
under different boundary conditions are derived by Milazzo et al.
(2009). For simply supported multilayered rectangular MEE plates
including anisotropicmaterials (Pan, 2001; Pan andHeyliger, 2002),
analytically derived a three-dimensional solutionwhich can predict
exactly static loads, natural frequencies andmode shapes. Bhangale
and Ganesan (2006) used semi-analytical finite element method to
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study vibration behavior of anisotropic and linear MEE plates made
of functionally graded materials. Based on a higher-order plate
theory, (Sim~oes Moita et al., 2009) numerically investigated static
and free vibration of MEE plates via finite element models. Wang
et al. (2011) presented three-dimensional exact solutions for
axisymmetric bending of simply supported and clamped boundary
FGM circular MEE plates. Zhang et al. (2013) derived Two-
dimensional equations of piezoelectric nano-scale plate incorpo-
rating surface effect. Recently, on the basis of higher-order shear and
normal deformable approach (Abdollahi et al., 2015), analytically
investigated buckling behavior of a thick piezoelectric platemade of
functionally graded material. Moreover, many researchers have
studied the mechanical behavior of single or multilayered MEE
plates at the macro scale (Chang, 2013; Kuang, 2014).

It should be noted that classical continuum theory was applied
to study mechanical properties of MEE plates in all the papers
mentioned above while to access material properties, the classical
continuum theory cannot predict the small scale effect with high
accuracy. However, the influences of atomic forces of small-scale
structures cannot be ignored. Among all of the nonlocal theories
that have been introduced to capture size effect in nanostructures,
the Eringen's nonlocal elasticity theory (Eringen, 1983, 1972) has
received considerable attention to show the size effect of nano-
structures. Using nonlocal theory in conjunction with rod model
(Demir and Civalek, 2013), studied the influence of small scale on
the torsional and axial response of microtubules. In another work
(Akg€oz and Civalek, 2013), employed modified couple stress theory
to investigate the static and dynamic behavior of microplates. Also,
based on the EulereBernoulli beam assumption and finite element
method, elastic instability of protein microtubules is analyzed by
Civalek and Demir (2016). Applying the surface piezoelectricity
model in conjunction with the nonlocal elasticity theory (Zhang
et al., 2014), investigated the propagation characteristic of elastic
waves in an infinite piezoelectric nanoplate. An investigation of the
dynamic characteristics of the piezoelectric Mindlin nanoplate
under various boundary conditions employing differential quad-
rature method (DQM) and nonlocal elasticity theory of Eringen is
presented by Ke et al. (2015). Recently, According to
EulereBernoulli beam theory, and Eringen's nonlocal elasticity
theory and von K�arm�an's assumptions, a size-dependent model has
been proposed to investigate nonlinear forced vibration of MEE
nanobeam incorporating external electric voltage, external mag-
netic potential and uniform temperature rise by Ansari et al. (2015).

By considering the Eringen's nonlocal theory and Kirchhoff plate
theory, the size-dependent vibration behavior of simply supported
rectangular MEE nanoplate is investigated by Ke et al. (2014). In this
work, the governing equations of motion and boundary conditions
are derived from Hamilton's principle and Navier approach is used
to solve the equilibrium equations of the system. An analytical
investigation on buckling and free vibration behavior of Mindlin
rectangular MEE nanoplates resting on Pasternak medium via
nonlocal elasticity theory has been carried out by Li et al. (2014).
They showed that the normalized frequency of system decreases by
increasing the value of electric potential. However, the normalized
frequency of system increases by increasing the value of magnetic
potential. Recently, according to the nonlinear von K�arm�an's strain-
displacement and nonlocal elasticity theory (Liu et al., 2015),
analytically obtained nonlinear frequencies of Kirchhoff Piezo-
electric nanoplates resting on theWinkler foundation. Furthermore
(Ansari and Gholami, 2016a), examined the buckling and post-
buckling of MEE nanoplates under thermal loading via nonlocal
form of Mindlin plate theory. Ghorbanpour Arani et al. (2016)
applied a nonlocal model of sinusoidal shear deformation plate
theory to analysis of wave propagation of viscoelastic sandwich
nanoplates by taking into account the surface effects.

Sometimes, for a good optimization design such as the design of
continuous dynamic vibration absorber and isolation, we need
complex systems of plates and beams. Double plate systems are
composed of two plates embedded in elastic medium or visco-
elastic medium. For the first time (Seelig, 1964; Seelig and
Hoppmann, 1964), presented a complex model for vibration anal-
ysis of beams which was composed of two parallel beams
embedded in an elastic medium with different boundary condi-
tions. After that, many research works have been carried out
focusing on the vibration and buckling investigation of complex
shapes of plates, beams and rods at the macro (Oniszczuk, 2000),
micro (Ghorbanpour Arani et al., 2015; Jamalpoor and Hosseini,
2015) and nano scales (Hosseini and Jamalpoor, 2015; Karli�ci�c
et al., 2015). Based upon the nonlocal elasticity theory, an explicit
closed-form for natural frequencies of double-piezoelectric-
nanoplate-systems connected by a homogeneous Winkler elastic
layer subject to external electric voltage for two cases (synchronous
and asynchronous vibration) is presented by Asemi and Farajpour
(2014a). In another work of Asemi and Farajpour (2014b), dy-
namic characteristics of a coupled piezoelectric nanoplates-system
embedded in a polymer matrix subjected to temperature change
and non-uniform voltage distribution is studied. The authors used
differential quadrature method (DQM) to obtain natural fre-
quencies for different boundary conditions.

However, by review of papers presented about free vibration
and buckling analysis of magneto-electro-elastic (MEE) nanoplates
according to Eringen's nonlocal elasticity theory, it is found that no
study has been presented in the literature on the free vibration and
biaxial buckling analysis of double-MEE nanoplate systems. In this
study, a visco-Pasternak medium is used to model the interaction
between two simply supported rectangular MEE nanoplates. Partial
differential equations of motion are derived by applying the
Hamilton's principle and using the analytical method, natural fre-
quencies and buckling load of the system are proposed in explicit
closed-form for three different cases (out-of-phase, in-phase and
one nanoplate being stationary).

2. Modeling of the problem and formulation

2.1. Geometrical configuration

As seen in Fig. 1, two rectangular nanoplates with uniform
thickness (h) consist of MEE materials coupled by a visco-Pasternak
substrate and are limited to the elastic foundation. The length and
width of each nanoplate are considered, respectively, by Lx and Ly.
Furthermore, the transverse displacements of the two nanoplates
are assumed to be w1ðx; y; tÞ; w2ðx; y; tÞ, and physical and
geometrical properties of the two MEE nanoplate are supposed to
be identical.

2.2. Constitutive relations for nonlocal Kirchhoff MEE nanoplate

By applying Kirchhoff plate hypothesis, the displacement fields
(u1, u2, u3) of the plate at an arbitrary point along x; y and z di-
rections at time t can be illustrated as

u1ðx; y; z; tÞ ¼ �z
vwðx; y; tÞ

vx

u2ðx; y; z; tÞ ¼ �z
vwðx; y; tÞ

vy

u3ðx; y; z; tÞ ¼ wðx; y; tÞ

(1)

where w indicates the middle-plane lateral displacement of the
nanoplate across to the z direction.
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