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This paper presents a C° quadrilateral enriched element by the Generalized Finite Element Method,
having trigonometric and exponential functions as enrichment functions, applied in free vibration
analysis with distorted mesh. The stiffness and mass matrices are obtained by subintervals numerical
integration. The efficiency of the enriched C° element is observed by solving several plane stress free
vibrations problems. The analyses include uniform and non-uniform mesh models, and severely dis-
torted meshes. Furthermore, the sensitivity of the enriched C° element is also analyzed. The results of the
analyses are compared with other numerical formulations and show that the enriched C° element
proposed in this paper has good performance.
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1. Introduction

The dynamic characterization of structures or a continuous
medium depends on the correct determination of their frequencies
and natural modes of vibration. The numerical evaluation of these
characteristics involves the solution of an eigen problem, where the
eigen pairs are the natural frequencies and the vibration modes.
The current literature shows many difficulties in accurately deter-
mining the higher orders frequencies, which can compromise the
quality of dynamic response - see, for example, Cottrell et al. (2006),
Torii et al. (2015); Arndt et al. (2016).

To overcome these difficulties in finite element analysis, the
usual solution is to refine the mesh (h-refinement) or increasing the
polynomial order of the elements (p-refinement). However, even
with the increase in the total number of degrees of freedom by
these refinements, yet there is significant loss of accuracy at higher
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frequencies. Hughes et al. (2005) show that the conventional finite
element solution has good accuracy in the acoustic branch of the
frequencies spectrum, but there is a degradation in the optical
branch. The limit of acoustic and optical branches for linear ele-
ments, for example, is near of 50% of the frequency spectrum. This
means that, in a dynamic analysis, only the lower 50% modes, those
of acoustic branch, have the necessary precision to well represent
the dynamic behavior of the structure or continuous medium.

Enriched methods based on the Partition of Unity Method, as
the generalized (GFEM) and extended (XFEM) finite element
methods, show better performance than conventional finite
element method in the determination of the eigenvalues and ei-
genvectors. The limit between the acoustic and optical branches is
higher than conventional finite elements (Hsu, 2016). Conse-
quently, a greater number of accuracy modes is calculated in the
analysis and the error is minimized (Melenk and Babuska (1996);
Duarte and Oden (1996), Belytschko et al. (2009); Arndt et al.
(2010)). Equivalence between GFEM and XFEM methods was
observed by Belytschko et al. (2009) and, therefore, from now on,
this work will use the name GFEM in the place of XFEM.
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Another advantageous aspect of the enriched methods is its
hierarchical nature. New enrichment functions can be added to
construct enriched mathematical space without mesh reconstruc-
tion. Thus, there is no need of rebuilding mass and stiffness
matrices of previous level of enrichment for each addition of new
enrichment level, unlike the conventional FEM. Despite these ad-
vantages, enriched methods present certain difficulties that require
special attention. The numerical integrations often require a greater
number of integration points. The numerical stability of equations
systems also depends on the number of significant digits used.
Moreover, the elements are more sensitive to mesh distortions
(Arndt et al., 2010; Torii et al., 2015). This study investigates some of
these aspects.

To better understand the conceptual aspects of the GFEM for
dynamic analysis, we now present briefly a literature review on
enriched finite element formulations, such as the hierarchical for-
mulations and the formulations based on the partition of unity (PU)
method.

The hierarchical enrichment formulation was presented by
Zienkiewicz et al. in 1983 as an enriched method of conventional
finite elements, which later came to be known as the hierarchical
finite elements method (HFEM). The idea of this method is based on
adding hierarchical functions in the shape functions without the
necessity to change the previous ones.

These characteristics of the HFEM favor the development of
adaptive meshes and its applications to solve boundary value
problems. The automatic process in adaptive meshes is controlled
by error estimation (Deuflhard et al., 1989). In the context of elas-
todynamic analysis, the hierarchical method was applied, among
the others, by Belytschko et al. (1995), for crack propagation
problem, and by Cho and Youn (1995) and Cramer et al. (1999).

For hierarchical enrichment, several mathematic functions have
been considered and applied in many situations. B-splines functions
were adopted by Leung and Au (1990) in the place of polynomial
functions for beam and plate elements. From the applications of
this method, the computational processing time was reduced,
while it maintains the accuracy of the results. Trigonometric
functions were also adopted as hierarchical functions (Ganesan and
Engels, 1992), as well as Bardell's functions (Han and Pety, 1996a; b)
for analysis of free vibration of plates. Fourier series were also
adopted for the enriched beam and plate element by presenting a
well-conditioned matrix as compared to other functions (Leung
and Chan, 1998). Moreover, Ribeiro and Petyt (1999) presented
the hierarchical formulation for geometrically nonlinear dynamic
analysis. For hierarchical formulation of the enriched quadrilateral
€% element, several functions have been proposed, such as the
Legendre (Yu et al., 2010), Lobatto, Kernel (Solin et al., 2004), and
Fourier series (Leung et al., 2004) functions.

Among the hierarchical formulations, the Generalized Finite
Elements has highlighting out. The proposal of this enriched finite
element method was given by Babuska et al. (1995), when it was
presented as the Partition of Unity Finite Element Method (PUFEM).
Independently, similar concepts were presented by Duarte and
Oden (1996) and by Oden et al. (1998), as a new cloud based hp-
finite element method. Its employment under the current name of
the GFEM arises, however, for the first time in Melenk and Babuska
(1996).

The GFEM is based on the Partition of Unity Method with con-
ventional FE shape functions as partition of unity (PU). [(Melenk
and Babuska, 1996), (Duarte and Oden, 1996) (Strouboulis et al.,
2000),]. Specific characteristics of the problem can be incorpo-
rated in the local approximation functions, which are used to enrich
the space of solution. The enriched FE shape functions are canceled
at conventional finite element nodal points and the main features
of conventional finite element method are preserved. The accuracy

of the numerical integration for the stiffness matrix is controlled
according to the type of function introduced and system of equa-
tions linearly independents can be solved by using known nu-
merical methods (Strouboulis et al., 2000).

The generalized finite element approach has been applied in
many engineering problems, including, for example, dynamic crack
propagation. In this case, elements through which the crack prop-
agates are enriched with special functions, which may represent
the stress intensity effect. The enrichment functions may be poly-
nomials or other kind of functions already known as, for example,
the equation for calculating the stress intensity factors. The stress
field around the crack tip is good represented by GFEM [(Duarte
et al,, 2001), (Bui and Zhang, 2012), (Yu et al., 2016), (Sharma
et al., 2013)]. Alternatively, the global local approach has also
been used, which enriches specific regions of the mesh only after a
first solution with coarse conventional elements meshes (Gupta
et al, 2012; Duarte and Kim, 2008). Other applications with
GFEM are the adaptive mesh for analysis of damage mechanics
(Barros et al., 2004), elastohydrodynamic analysis and free vibra-
tions, in beams or plates, or states of plane stress (De Bel et al.,
2005; Arndt et al,, 2010). A posteriori error estimation was also
developed by Strouboulis et al. (2006). The GFEM has also been
applied to solve the Helmholtz equation, which describes physical
problems such as acoustic and electromagnetic problems, among
others. In some applications, exponential and trigonometric func-
tions were adopted as enrichment functions in problems that
involve the propagation of two-dimensional waves. The employ-
ment of trigonometric and exponential function as enrichment
function in dynamic analysis is not new [(Arndt et al., 2010), (Leung
and Chan, 1998), (Leung et al., 2004) (Torii et al., 2015),]. Due to the
dynamic response presents curve profile similar to trigonometric
and exponential functions. Furthermore, this employment is a
novelty in the enriched C° element formulated by GFEM. The choice
of enrichment functions should respect criteria established by the
GFEM. These criteria are presented in the literature (Strouboulis
et al., 2008).

However, some researchers (Babuska and Banerjee, 2012; Zhang
et al., 2014) have reported that the GFEM may have high values for
condition number of stiffness matrix. To overcome this problem,
the authors presented a small adjustment in the GFEM to make it a
more efficient method. This modification received the name of
Stable Generalized Finite Element (SGFEM). The new modification,
whose results were satisfactory for structural analysis, preserves
the features of the GFEM, and introduces modifications and other
selection criteria for the enrichment function.

It is worth mentioning that the enriched formulation of the
quadrilateral domain was also developed by the meshless method
[(Bui et al., 2011) (Bui et al., 2013),], isogeometric approach (Thai
et al, 2014), adaptive modified element formulation [(Nguyen
et al,, 2013), (Nguyen et al., 2015), (Nguyen et al., 2016)], spectral
finite element method [(Song et al., 2016), (Li and Soares, 2015),
(Park and Lee, 2015), (Hedayatrasa et al., 2014), (Shirmohammadi
et al., 2015), (Wang and Unal, 2013), (Joglekar and Mitra, 2016)],
and other methods derived from the Partition of Unity Method
(PUM), whereas a local approximation function can be of various
categories, including the least square point interpolation method
(LSPIM) (Rajendran and Zhang, 2007; Zhang et al., 2014). Addi-
tionally, studies also show the versatility of adopting a local radial
polynomial approximation function (Xu and Rajendran, 2011). In
the PUM context, there are other formulations that adopt different
mathematical function, such as spline functions (Chen et al., 2010),
or the consecutive interpolation method, in order to avoid recom-
puting the quadrilateral element shape function [(Bui et al., 2014),
(Bui et al., 2016) (Kang et al., 2015),].

A relevant aspect for good performance of GFEM is the
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