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h i g h l i g h t s

• Several new complex cells are designed.
• The new complex cells bring different band structure characteristics. The suggestion given by the Bragg-type band gap mechanism are corrected and

improved.
• The new Bragg-type phononic crystal pipes with a same lattice constant obtain a lower frequency band gap or widen the low-frequency band gap.
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a b s t r a c t

Low-frequency vibration control is a key technology in the vibration control of pipe systems. The existing
related research on band gap mechanisms suggests that gigantic structures are required for the Bragg-
type band gaps to control low-frequency vibration. Thus, the application of Bragg-type phononic crystal
pipe is greatly restricted. However, the suggestion given by the existing Bragg-type band gapmechanisms
is based on simple cell structure and material composition. The cell structures of Bragg-type phononic
crystal pipes are also simple and the potential action of the cell has not been fully excavated at present. In
this paper, several new cells with relatively complex structure are designed to study the influence on the
Bragg-type band gap characteristics. Band structures of the Bragg-type phononic crystal pipes with new
cells are calculated via a combination of periodic structure theory and finite element method. Compared
to the classical phononic crystal pipe, when a same lattice constant is adopted, the phononic crystal pipes
with new cells obtain lower frequency band gaps or widen the low-frequency band gaps.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Pipe systems are widely used in many fields. The pipe
vibration may cause noise and malfunction. Low-frequency
vibration control is a key technology in the vibration control
of pipe systems. However, the limitations of pipe distribution
and mass, the interaction between fluid and pipe wall, and
the safety requirements make many low-frequency vibration
control methods ineffective [1–3]. The new methods given
by phononic crystals (PCs) theory may solve these problems
[4–6]. The study of elastic wave propagation in phononic crystals
has received increasing attention in the last several decades
[7–14]. The presence of band gaps (BGs, also referred to as stop
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bands) in PCs, which blocks elastic wave propagation within the
BG frequency range (BG frequency range, also referred to as BG
bandwidth) [15], constitutes a new method to control noise and
vibrations. The band gaps are introduced via twomechanisms: the
Bragg-type band gap [16,17], which is due to the Bragg reflection,
and the locally-resonant (LR) band gap [18], which is due to the
scattering resonances stimulated by elastic waves of specific
frequencies. The spatial modulation of the elasticity must be of
the same order as the wavelength in the gap induced by the
existing Bragg scattering mechanism [17]. For example, when
the sound speed of steel is 3230 m/s, according to the formula
of the central frequency of the BG (f = c/2a, c is the sound
speed, a is the cell length), PC pipe made solely of steel must be
used to control the vibration below 400 Hz, whose cell length
is at least 4 m. Due to the size limitation in axial direction, it
is difficult in practice to obtain low-frequency Bragg-type band
gaps via using small size structure. The locally resonant BGs can
exist in a frequency range two orders of magnitude lower than
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the one resulting from the Bragg scattering [17], which breaches
the size constraint of Bragg scattering mechanism and may solve
the difficult problem of obtaining low-frequency band gaps in a
small size pipe structure. However, the locally resonant structure
only solves the size limitation in axial direction. Besides, the
bandwidth of LR band gap is usually narrow [19]. Although the
effect of inertial amplification [20,21] can be used to improve
the bandwidth of locally resonant band gap, it may result in
additional mass and new conflicts in radial direction. Many pipe
systems are arranged densely in practical applications. The size
limitation in axial direction makes it impossible for us to have
the operation. The Bragg-type PC pipe can completely solve the
size limitations in radial direction. Newmanufacturing techniques
such as 3D printing and new welding technology make it possible
to process the Bragg-type PC pipes. Therefore, the key question
is that can we get low-frequency band gaps via choosing the cell
structure of Bragg-type phononic crystals for vibration control
which is contradictive to the suggestion given by the existing
related research. The suggestion given by the existing Bragg-
type band gap mechanism is based on simple cell structures and
material composition. So we shift our attention to the structural
complexity and material composition of the cell and have found
some new features. In this paper, the Bragg-type PC pipes with
new cells are designed to study the influence of the cell structure
andmaterial composition on the band gaps. The periodic structure
theory (PST) and the finite elementmethod (FEM) are combined to
perform the calculations for the new band structures. The results
under a same lattice constant are then compared and analyzed to
answer the question above.

2. New Bragg-type PC pipes

Fig. 1(a) shows the classical Bragg-type PC pipe composed
of different materials. The materials are bonded only in axial
direction. The dimension of one cell in the dashed line box marked
as a is the lattice constant. The cell expansion along the radial
direction and the three-dimensional mode are shown in Fig. 1(b).
In order to study the feasibility of obtaining low-frequency Bragg-
type band gaps by changing the cell structure under a same lattice
constant, several new Bragg-type cells are designed in this paper.
Each kind of the new cells contains two or more kinds of materials.
Compared with the classical cell, the material binding degree is
higher. The materials are bonded not only in axial direction, but
also in radial direction. The pipe cell is cut into two halves in
axial direction and several parts along circumferential direction
at the same time. Different materials are alternately arranged
along circumferential direction. Then, the two parts with different
material in axial direction stagger an angle along circumferential
direction. Fig. 2 shows the expansions of the cells cut into
halves along circumferential direction and the corresponding
three-dimensional models. Different colors represent different
materials. One with the staggered angle of 180° shown in Fig. 2(a)
is marked as two-part-180° cell and the other one with the
staggered angle of 90° shown in Fig. 2(b) is marked as two-part-
90° cell. Similarly, the cells cut into four equal parts in Fig. 3 are
marked as four-part-90° cell and four-part-45° respectively. There
are a lot of similar structures: three-part-120° or three-part-60°,
six-part-60° or six-part-30°, and nine-part-40° or nine-part-20°,
etc. In addition, a new cell also can be with a staggered distance in
the axial direction. It is important to note that not all of the above
cells will have a positive effect on the low-frequency BG. In the
next calculation and analysis, the two relatively simple cells with
positive effects including two-part-180° cell and four-part-90° cell
are adopted to verify our assumptions.

Fig. 1. The classical Bragg-type PC pipe composed of two kinds of materials.

3. Theoretical modeling and calculation

For classical PC pipe, the Euler beam model and Timoshenko
beam model can be used to study the pipe vibration. However,
for the Bragg-type PC pipes with new cells, since the materials
are different at the same axial displacement, the beammodels fail.
The FEM used in the study of free wave propagation in periodic
structures was first applied by Orris and Petyt [22]. Latter, similar
approaches were developed by Mace and his team to predict
dispersion relations of wave motion in structural waveguides [23].
The propagation constants and forced response can be computed
by considering just one unit cell of the periodic system via
combining periodic structure theory and FEM. Xiao et al., uses
this method to study the periodic truss beams with members of
different materials [24]. In our paper we use the same method to
perform the calculations for the band structures of the new Bragg-
type PC pipes. PST and FEM are combined by considering just one
new Bragg-type cell for free wave propagation in Bragg-type PC
pipe as follows. Without considering the impact of damping, the
kinetic equation of the PC pipe cell is given by

(K − ω2M)δ = F (1)

where, ω is angular frequency, K is stiffness matrix, M is mass
matrix, δ and F are node displacement and force. Combining the
right (R) and left (L) boundaries, Eq. (1) can be written in expanded
partitioned form as follows:
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where, D is the dynamic stiffness matrix. Considering a free wave
propagating along the infinite PC pipe, the Bloch theory [25] states
that

δR = eλδL, FR = eλFL (3)

where, λ is the propagation constant. It contains the information of
Bloch vector and the lattice constant. Combining Eqs. (2) and (3),
one obtains

FL = (DLL + eλDLR)δL
FL = −(e−λDRL + DRR)δL


. (4)

Then, one can derive the quadratic eigenvalue problem as
follows:
DRL + (DLL + DRR)eλ

+ DLRe2λ

δL = 0. (5)

The Eq. (5) can be reduced to the linear eigenvalue equation as
follows:

DRL DRR
0 I


− eλ


−DLL −DLR
I 0

 
δL
δR


=


0
0


. (6)



Download	English	Version:

https://daneshyari.com/en/article/5014452

Download	Persian	Version:

https://daneshyari.com/article/5014452

Daneshyari.com

https://daneshyari.com/en/article/5014452
https://daneshyari.com/article/5014452
https://daneshyari.com/

