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a b s t r a c t

The effect of nonlinear elastic pre-stress on coupled compressional and vertically polarised shear elastic
wave propagation in a two-dimensional periodic structure is investigated. The medium consists of
cylindrical annuli embedded on a periodic lattice in a uniform host material. An identical inhomogeneous
deformation is imposed in each annulus and the theory of small-on-large is used to find the incremental
wave equations governing subsequent small-amplitude elastic waves. The plane-wave-expansion
method is employed in order to determine the permissable eigenfrequencies. It is found that the
application of pre-stress has a significant effect on the band structure, allowing stop bands to be
controlled. The sensitivity of the choice of constitutive behaviour is studied and it is shown that the
fundamental shear wave mode is largely unchanged for the class of strain energy functions considered
here, whereas the compressional mode is considerably more sensitive to this choice.

© 2016 The Authors. Published by Elsevier Ltd.
This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Improvements in engineering and technology rely greatly
on advanced, complex materials, which often possess intricate
microstructure, permitting macroscopic behaviour that is not
present in naturally occurring materials. Elastodynamic and
acoustic phononic media present a broad range of opportunities
for directing waves [1–3] and being able to design these materials
carefully in order to enable wave focusing, filtering and directivity
is greatly advantageous. Of specific importance is the notion of
tunable, configurable or re-configurable phononic media, which
have static and dynamic material properties that can be tuned
in real time. Such materials have many obvious advantages over
mediawith properties that are fixed uponmanufacture. A standard
approach is to modify the microstructure and then understand
how this modification affects the macroscopic response on a static
and dynamic level. A number of opportunities to enable this have
been presented. Early work in tuning the acoustic response of such
media focused on modifying the band gap properties of phononic
media by rotating cylinders [4–6].
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Several groups have considered using the influence of magnetic
or electric fields as a means to perform external control over a
crystal [7,8]. In [9], an electric field deforms annular cylinders that
are embedded in air, piezoelectric materials are studied in [10–12]
and electro-rheological materials in [13]. Thermal effects have also
been proposed but the effect is usually fairly weak and so a phase
transition effect is usually required [14,15]. These mechanisms
for control provide the advantage of a phononic switch in such
materials. Mechanical mechanisms to create photonic switches
have also recently been considered, see e.g. [16,17].

It is well-known that nonlinear elastic pre-stress affects the
propagation of subsequent linear elastic waves in themedium [18]
and this effect has been exploited in order to modify the
band-structure of elastodynamic phononic media. In [19,20] an
inhomogeneous beam was considered and it was shown that the
band structure can be manipulated effectively using pre-stress. It
has recently been noted that the response of a nonlinearly elastic
material can be extremely sensitive to the choice of constitutive
behaviour [21].

An electrical bias has been employed in order to control
deformation and hence band gaps in layered and fibre reinforced
media [22,23]. Experiments in one dimensional structures were
performed by [24]. By making use of numerical simulations, via
the finite-element method, the mechanical tunability of three-
dimensional structures has also recently been studied [25]. The
effect of microstructural buckling of an elastic material was the
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Fig. 1. Illustration of the unit cell for the undeformed configuration on the left and the deformed configuration in the middle. On the right hand side it is shown how the
cylindrical annuli are embedded in a square periodic lattice with period ℓ in a stress-free, homogeneous medium shown by the hashed pattern.

focus of investigation in [26–29]. In [30] elastic microstructural
helices were employed to control sound.

In this article a new mechanism for the control of band gaps
in the full elastodynamic context is introduced, based on the
work in [31], which was restricted to the scenario of antiplane
elastic waves. In that work, incompressible hyperelastic annular
cylinders were embedded periodically in an elastic medium and
their deformation ensured that band gaps could be switched on
and off. Further however, it was shown, based on the theory
of hyperelastic cloaking [32–35] that some materials permit
deformation in a manner such that in a normal setting from a
geometric viewpoint they would possess band gaps but the pre-
stress prohibits this; these materials were termed phononic cloaks.
The theory of small-on-largewas employed to derive the equations
governing the propagation of superposed antiplane elastic waves
and the plane-wave-expansion technique was extended in order
to accommodate the inhomogeneous deformation present in the
cylinders.

Here the same geometry as considered in [31] is employed, as
depicted in Fig. 1 but here the annular cylinders are permitted
to be compressible in order to accommodate the propagation of
compressional waves.

2. Deformation and governing incremental wave equations

As illustrated in Fig. 1 the medium consists of a two-
dimensional square array (with period ℓ) of nonlinear isotropic
elastic annular cylinders each with initial inner and outer radii R0
and R1 respectively, density ρ1 and linear elastic bulk and shear
moduli κ1 and µ1 respectively, embedded inside a homogeneous
elastic host medium of density ρ0 and linear elastic bulk and shear
moduli κ0 and µ0. The unit cell is depicted in its stress-free state
in Fig. 1(a). All annuli are assumed to be deformed identically. The
deformation consists of an inflation (leading to an inhomogeneous
radial deformation) and extension along its axis such that, crucially
here, the outer radius of the cylinder remains unchanged, r1 = R1.
This results in a deformed configuration as depicted in Fig. 1(b). In
principal the host medium can be linear or nonlinearly elastic but
herewe shall consider it as linear. Subsequent elastodynamicwave
propagation depends on the initial deformation and the governing
equations are determined by appealing to the theory of small-on-
large [18].

It is envisaged that the deformation results from inserting a stiff
cylindrical inclusion with elastic properties µ2 and κ2 and density
ρ2 into the inner region of the annulus.

2.1. Annular cylinder inflation

The deformation of the annular cylinder is conveniently de-
scribed in the form

R = R(r), Θ = θ, Z = z/ζ (1)

where the usual convention is followed, using upper (lower) case
variables for the reference (deformed) configuration. Deformation
is imposed such that

R0 = R(r0), R1 = R(r1) = r1. (2)

Principal stretches are

λr =
1

R′(r)
, λθ =

r
R(r)

, λz = ζ . (3)

A second order nonlinear ordinary differential equation (ODE) is
determined from the first equation of static equilibrium divT = 0,
the second and third being trivially satisfied by the assumed form
of deformation. The ODE takes the form

R′′
= g


R, R′,W , ζ


(4)

where W is the strain energy function governing the constitutive
behaviour of the annulus and g is some function that is known only
whenW is prescribed. This ODE for R(r) is subject to the boundary
conditions (2).

In general the ODE (4) cannot be integrated analytically except
for six classes of strain energy functions [36]. The issue with
these materials types is that they are not considered physically
realistic. Therefore two alternative strain energy functions shall
be considered here that have been proposed as realistic models of
compressible nonlinear elastic materials. First the form introduced
by Levinson and Burgess [37] is employed:

WLB =
µ1

2
(I1 − 3) +

λ1 + µ1

2
(I3 − 1) − (λ1 + 2µ1)(I

1/2
3 − 1),

(5)

which was been proposed as a compressible extension of the
incompressible neo-Hookean strain energy function and this shall
be referred to here as LB. Note that λ1 = κ1 − 2µ1/3. The second
form considered is a compressible extension of theMooney–Rivlin
strain energy function [38]

WCMR =
µ1S1
2

(I1 − 3 − log (I3))

+
µ1(1 − S1)

2
(I2 − 3 − 2 log (I3))

+
3λ1 + 2µ1

6


I1/23 − 1

2
, (6)
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