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a b s t r a c t

We present a homogenization method for periodic acoustic composites based on the Plane Wave
Expansion (PWE) method. We show that the description of periodic acoustic composites needs
constitutive parameters which depend on frequency and wavenumber, meaning that the effective
material is resonant and nonlocal. Also, an anisotropic mass density and an additional constitutive
parameter, called the Willis term in analogy to its counterpart in elasticity, are found. Numerical
calculations compare the presentmethodwith the traditionalmultiple scatteringmethod, showing a good
agreement between both theories. However, themethod presented here overcomes the limitations of the
multiple scattering method, where the incorporation of anisotropy and non-locality implies solving the
scattering problem of anisotropic objects with additional boundary-conditions. A final example showing
the importance of nonlocal effects is provided. This work shows that acoustic metamaterials are nonlocal
materials in general, and provides a tool for the propermodeling of the nonlocal constitutive parameters.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The study of the propagation of acoustic waves through
complex media has received a new insight within the last ten
years with the advent of the so called ‘‘acousticmetamaterials’’ [1].
These structures consist essentially in arrangements (periodic
or not) of resonators designed in such a way that, when the
wavelength of the acoustic wave is larger than the typical
distance between scattering units, the structure behaves as
an effective material with frequency-dependent constitutive
parameters. Then, metamaterials present resonant constitutive
parameters so that they can behave like materials with negative
mass density [1], bulk modulus [2] or both simultaneously [3–
5]. Additionally, it was also shown that acoustic metamaterials
required for their proper description an anisotropic mass density,
even in the quasi-static limit [6]. These unusual constitutive
parameters offer as well a wide variety of applications, like
hyperlenses [7,8], cloaking devices [6,9] or omnidirectional
absorbers [10,11].

Describing micro-structured materials at the macro-scale by
means of homogenization methods not only shortens the sim-
ulation time, but it also facilitates the design of metamaterials
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by a description in terms of effective parameters. Additionally, it
also gives new ways to describe the physical behavior of hetero-
geneous micro-structured media. However, the development of
mathematical tools for the dynamical description of these com-
posites is a complex task [12]. Although homogenization theo-
ries for fluid or solid composites in the quasi-static limit are well
known [13,14], finite-frequency methods have been recently de-
veloped based on the coherent potential approximation [15,16] or
the multiple scattering theory [17,18], which have allowed the in-
clusion of a resonant-like behavior of the constitutive parameters.
Recent methods allow also for the description of composites even
in the high frequency limit [19], where the discussion about the
meaning of the constitutive parameters is even more complex.

In the previously referenced works, the underlying idea for the
homogenization of metamaterials is that a combination of materi-
als gives a composite with frequency-dependent constitutive pa-
rameters. However, the pioneering work of Willis [20] on the ho-
mogenization of elastic composites revealed that in the dynamic
regime, composites could change the nature of the constituent
materials, in the sense that new constitutive parameters would
emerge as a consequence of the averaging process. In this context,
equations for spatially averaged fields are of the Willis form [21–
23]: themass density becomes tensorial andmomentumand strain
are coupled by means of the so called ‘‘Willis tensor’’, which is a
new constitutive parameter not necessarily found in the individ-
ual materials forming the composite. The exact expressions of fre-
quency–wavenumber dependent effective parameters were first
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derived byWillis for a periodic laminate [22] in term of the Green’s
function of the media. Efforts have then beenmade to find analyti-
cal and easier calculable expressions, first in one-dimensional [24–
26] periodic composites, and later in three-dimensional [27–29]
periodic structures. The philosophy of Willis work is combined
with the Bloch–Floquet decomposition and the PlaneWave Expan-
sionmethod [28,29], the monodromymatrix formalism [24,30], or
the comparison with a reference medium [27].

In this context, we present a homogenization theory, based
on the Plane Wave Expansion (PWE) method, which defines a
set of generalized (non-local) effective parameters for periodic
acoustic composites. As mentioned before, it is shown that both
the effective mass density and bulk modulus of these composites
are frequency dependent and non-local, with the additional
complexity that the mass density is also anisotropic. Moreover,
it is found that an additional constitutive parameter, called the
Willis term in analogy to its counterpart in elasticity, is needed
for their description. It will be introduced here but not deeply
analyzed, since the present work focuses its attention on the non-
local properties of the effective parameters.

The paper is organized as follows: Section 2 outlines the homog-
enization model used to calculate the constitutive parameters of
the propagation. Section 3 compares the present method with the
classical multiple-scattering homogenization method. Section 4
shows a numerical example consisting of a rectangular lattice of
cylinders which behaves as an anisotropic metamaterial with non-
local effective parameters. Finally, the conclusions and the per-
spectives of this work are reported in Section 5.

2. Homogenization theory for periodic acoustic composites

We present a homogenization theory for sonic crystals based
on the PWE method [31–33], and similar in methodology to that
previously developed for phononic crystals [29]. The starting point
is the equation of motion for an inhomogeneous fluid, in which a
harmonic time dependence of frequency ω has been assumed,

∇ · [ρ−1(r)∇P(r)] = −B−1(r)ω2P(r), (1)

with ρ(r) and B(r) being the position dependent mass density
and bulk modulus, respectively, and P(r), the pressure field. For
a homogeneous medium ρ(r) = ρb and B(r) = Bb, the dispersion
relation is obtained by assuming plane wave propagation with
wave vector k = kn (with n the direction of the propagation),

k2 = ω2ρb/Bb. (2)

In an infinite periodic structure, ρ(r) and B(r) are periodic
functions of r, then they can be expanded in a Fourier series on the
reciprocal lattice vector G. Under this periodicity condition, Bloch
theorem states that the pressure field can be expanded as

P(r) = eik·r

G

PGeiG·r , (3)

which inserted into the wave equation becomes
G′


i

(k + G)iρ
−1
G−G′(k + G′)iPG′ = ω2


G′

B−1
G−G′PG′ , (4)

with ρ−1
G and B−1

G , the Fourier components of the inverse of the
mass density and inverse of the bulk modulus, respectively. The
index i indicates a sum over the three components of k, G and G′

vectors. In matrix form, Eq. (4) is expressed as
G′

MGG′PG′ = ω2

G′

NGG′PG′ (5)

with

MGG′ =


i

(k + G)iρ
−1
G−G′(k + G′)i (6)

and

NGG′ = B−1
G−G′ . (7)

Eq. (5) is a generalized eigenvalue equation, which for a given
k returns a set of eigenfrequencies ω. The eigenfrequencies yield
the band structure or dispersion curve ω = ω(k) of the periodic
medium. Thedescription of the phononic crystal as a homogeneous
material is made by assuming that the effective pressure field
propagates as a purely Bloch wave, that is

Peff = ⟨P⟩eik·r , (8)

with ⟨P⟩ being the spatial average of the pressure field. Then,
finding an equation for ⟨P⟩ and its relationship with ω and k
will give a definition of an effective medium and will allow an
identification of the different constitutive parameters. Since the
material is periodic, the average of the pressure field will be equal
to the average in the unit cell, so that from Eq. (3) we find that

⟨P⟩ = PG=0. (9)

The average of the pressure field is then given by the G = 0
component of PG, which can be obtained by expressing Eq. (5) as

ω2N00P0 + ω2

G′≠0

N0G′PG′ = M00P0 +


G′≠0

M0G′PG′ (10a)

ω2NG0P0 + ω2

G′≠0

NGG′PG′ = MG0P0 +


G′≠0

MGG′PG′ . (10b)

Hereafter, it is considered that matrix elements labeled with G do
not include the term G = 0, which is extracted from the above
decomposition. We can now solve from the second equation for
PG,

PG′ = −


G≠0

χG′G(ω, k)(MG0 − ω2NG0)P0 (11)

where

χG′G(ω, k) = (MG′G − ω2NG′G)
−1
G′G, (12)

and insert it into the first one (Eq. (10a)), obtaining the following
equation

ω2N00 −


G,G′≠0

ω2 N0G′χG′G(MG0 − ω2NG0) − M00

+


G,G′≠0

M0G′χG′G(MG0 − ω2NG0)


P0 = 0. (13)

Eq. (13) is formally the same equation as (5), however it is not an
eigenvalue equation, but a secular equation for P0 similar to Eq. (2),
where the solutions ω = ω(k) are obtained from the zeros of the
function Γ ,

Γ = ω2N00 −


G,G′≠0

ω2N0G′χG′G(MG0 − ω2NG0) − M00

+


G,G′≠0

M0G′χG′G(MG0 − ω2NG0). (14)

In the above equation the coefficients are in general functions
of both ω and k, what makes it less suitable for band structure
calculation than Eq. (5) but more suitable for the description of the
sonic crystal as an effective material. Indeed, we can see that the
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